AviBERT: Transformer Tabanlı Hava Aracı Metni Sınıflandırma
| dc.contributor.author | Ünal, Muhammed Cihat | |
| dc.contributor.author | Yurtalan, Gökhan | |
| dc.contributor.author | Karatas, Yahya Bahadır | |
| dc.contributor.author | Karamanlıoğlu, Alper | |
| dc.contributor.author | Demirel, Berkan | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2025-10-06T17:40:16Z | |
| dc.date.available | 2025-10-06T17:40:16Z | |
| dc.date.issued | 2025 | |
| dc.description | Isik University | |
| dc.description.abstract | In recent years, transformer-based models pre-trained on extensive corpora have played a critical role in the advancement of Natural Language Processing methodologies. Particularly, methods based on BERT have demonstrated remarkable performance across various tasks by offering robust capabilities in deeply understanding texts semantically. However, despite these advancements, there is a notable scarcity of studies applying these technologies in the aviation sector. This paper develops a multi-class classification model for aviation-specific texts using variants of BERT. The study encompasses the processes of collecting web content related to aircraft, labeling and model training. The details of the dataset are explained and the outcomes of the study are assessed based on the macro F1-score and accuracy of different models. © 2025 Elsevier B.V., All rights reserved. | |
| dc.identifier.doi | 10.1109/SIU66497.2025.11112276 | |
| dc.identifier.isbn | 9798331566555 | |
| dc.identifier.scopus | 2-s2.0-105015382990 | |
| dc.identifier.uri | https://doi.org/10.1109/SIU66497.2025.11112276 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/15680 | |
| dc.language.iso | tr | |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
| dc.relation.ispartof | -- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450 | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Fighter Aircraft | |
| dc.subject | Natural Language Processing Systems | |
| dc.subject | Personnel Training | |
| dc.subject | Text Processing | |
| dc.subject | Aviation Sector | |
| dc.subject | Classification Models | |
| dc.subject | Labelings | |
| dc.subject | Language Processing | |
| dc.subject | Multi-Class Classification | |
| dc.subject | Natural Languages | |
| dc.subject | Performance | |
| dc.subject | Robust Capability | |
| dc.subject | Text Classification | |
| dc.subject | Web Content | |
| dc.subject | Training Aircraft | |
| dc.title | AviBERT: Transformer Tabanlı Hava Aracı Metni Sınıflandırma | |
| dc.title.alternative | AviBERT: Transformer-based Aircraft Text Classification | |
| dc.type | Conference Object | |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 58489299100 | |
| gdc.author.scopusid | 57208800784 | |
| gdc.author.scopusid | 59254744200 | |
| gdc.author.scopusid | 57197835852 | |
| gdc.author.scopusid | 57190744256 | |
| gdc.description.department | Çankaya University | |
| gdc.description.departmenttemp | [Ünal] Muhammed Cihat, Epam Systems, Hacettepe Üniversitesi, Ankara, Turkey; [Yurtalan] Gökhan, Turksat Inc., Turkey, Çankaya Üniversitesi, Ankara, Turkey; [Karatas] Yahya Bahadır, Havelsan A.S., Ankara, Turkey, Middle East Technical University (METU), Ankara, Turkey; [Karamanlıoğlu] Alper, Turksat Inc., Turkey, Middle East Technical University (METU), Ankara, Turkey; [Demirel] Berkan, Turksat Inc., Turkey | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | N/A | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4413460651 | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.18 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 0b9123e4-4136-493b-9ffd-be856af2cdb1 |