Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Orthonormal Piecewise Vieta-Lucas Functions for the Numerical Solution of the One- and Two-Dimensional Piecewise Fractional Galilei Invariant Advection-Diffusion Equations

dc.contributor.author Razzaghi, Mohsen
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Heydari, Mohammad Hossein
dc.contributor.authorID 56389 tr_TR
dc.date.accessioned 2024-05-02T11:52:59Z
dc.date.accessioned 2025-09-18T12:48:15Z
dc.date.available 2024-05-02T11:52:59Z
dc.date.available 2025-09-18T12:48:15Z
dc.date.issued 2023
dc.description Heydari, Mohammad Hossein/0000-0001-6764-4394 en_US
dc.description.abstract Introduction: Recently, a new family of fractional derivatives called the piecewise fractional derivatives has been introduced, arguing that for some problems, each of the classical fractional derivatives may not be able to provide an accurate statement of the consideration problem alone. In defining this kind of derivatives, several types of fractional derivatives can be used simultaneously. Objectives: This study introduces a new kind of piecewise fractional derivative by employing the Caputo type distributed-order fractional derivative and ABC fractional derivative. The one-and two-dimensional piecewise fractional Galilei invariant advection-diffusion equations are defined using this piecewise frac-tional derivative.Methods: A new class of basis functions called the orthonormal piecewise Vieta-Lucas (VL) functions are defined. Fractional derivatives of these functions in the Caputo and ABC senses are computed. These func-tions are utilized to construct two numerical methods for solving the introduced problems under non -local boundary conditions. The proposed methods convert solving the original problems into solving sys-tems of algebraic equations. Results: The accuracy and convergence order of the proposed methods are examined by solving several examples. The obtained results are investigated, numerically.Conclusion: This study introduces a kind of piecewise fractional derivative. This derivative is employed to define the one-and two-dimensional piecewise fractional Galilei invariant advection-diffusion equa-tions. Two numerical methods based on the orthonormal VL polynomials and orthonormal piecewise VL functions are established for these problems. The numerical results obtained from solving several examples confirm the high accuracy of the proposed methods.& COPY; 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). en_US
dc.description.publishedMonth 7
dc.identifier.citation Heydari, Mohammad Hossein; Razzaghi, Mohsen; Baleanu, Dumitru. (2023). "Orthonormal piecewise Vieta-Lucas functions for the numerical solution of the one- and two-dimensional piecewise fractional Galilei invariant advection-diffusion equations", Journal of Advanced Research, Vol.49, pp.175-190. en_US
dc.identifier.doi 10.1016/j.jare.2022.10.002
dc.identifier.issn 2090-1232
dc.identifier.issn 2090-1224
dc.identifier.scopus 2-s2.0-85140751421
dc.identifier.uri https://doi.org/10.1016/j.jare.2022.10.002
dc.identifier.uri https://hdl.handle.net/123456789/12028
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Piecewise Fractional Derivative en_US
dc.subject Orthonormal Vieta-Lucas Polynomials en_US
dc.subject Orthonormal Piecewise Vieta-Lucas Functions en_US
dc.subject Galilei Invariant Advection-Diffusion Equations en_US
dc.title Orthonormal Piecewise Vieta-Lucas Functions for the Numerical Solution of the One- and Two-Dimensional Piecewise Fractional Galilei Invariant Advection-Diffusion Equations en_US
dc.title Orthonormal piecewise Vieta-Lucas functions for the numerical solution of the one- and two-dimensional piecewise fractional Galilei invariant advection-diffusion equations tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Heydari, Mohammad Hossein/0000-0001-6764-4394
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57209064354
gdc.author.scopusid 7006078872
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Heydari, Mohammad/Aab-7776-2022
gdc.author.wosid Razzaghi, Mohsen/Aaq-5376-2021
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Heydari, Mohammad Hossein] Shiraz Univ Technol, Dept Math, Shiraz, Iran; [Razzaghi, Mohsen] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] Lebanese Amer Univ, Beirut, Lebanon en_US
gdc.description.endpage 190 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 175 en_US
gdc.description.volume 49 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4303649323
gdc.identifier.pmid 36220592
gdc.identifier.wos WOS:001038008400001
gdc.openalex.fwci 2.44078018
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 9
gdc.plumx.crossrefcites 10
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.wos.citedcount 9
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files