Parallel wavelet-based clustering algorithm on GPUs using CUDA
dc.authorid | Yildirim, Ahmet Artu/0000-0001-6555-765X | |
dc.authorid | Ozdogan, Cem/0000-0002-9644-0013 | |
dc.authorscopusid | 37058218500 | |
dc.authorscopusid | 7801368240 | |
dc.authorwosid | Ozdogan, Cem/L-2685-2013 | |
dc.contributor.author | Yildirim, Ahmet Artu | |
dc.contributor.author | Özdoğan, Cem | |
dc.contributor.author | Ozdogan, Cem | |
dc.contributor.other | Ortak Dersler Bölümü | |
dc.date.accessioned | 2016-06-22T09:02:36Z | |
dc.date.available | 2016-06-22T09:02:36Z | |
dc.date.issued | 2011 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Yildirim, Ahmet Artu; Ozdogan, Cem] Cankaya Univ, Dept Comp Engn, TR-06530 Ankara, Turkey | en_US |
dc.description | Yildirim, Ahmet Artu/0000-0001-6555-765X; Ozdogan, Cem/0000-0002-9644-0013 | en_US |
dc.description.abstract | There has been a substantial interest in scientific and engineering computing community to speed up the CPU-intensive tasks on graphical processing units (GPUs) with the development of many-core GPUs as having very large memory bandwidth and computational power. Cluster analysis is a widely used technique for grouping a set of objects into classes of "similar" objects and commonly used in many fields such as data mining, bioinformatics and pattern recognition. WaveCluster defines the notion of cluster as a dense region consisting of connected components in the transformed feature space. In this study, we present the implementation of WaveCluster algorithm as a novel clustering approach based on wavelet transform to GPU level parallelization and investigate the parallel performance for very large spatial datasets. The CUDA implementations of two main sub-algorithms of WaveCluster approach; namely extraction of low-frequency component from the signal using wavelet transform and connected component labeling are presented. Then, the corresponding performance evaluations are reported for each sub-algorithm. Divide and conquer approach is followed on the implementation of wavelet transform and multi-pass sliding window approach on the implementation of connected component labeling. The maximum achieved speedup is found in kernel as 107x in the computation of extraction of the low-frequency component and 6x in the computation of connected component labeling with respect to the sequential algorithms running on the CPU. (C) 2010 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Guest Editor. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.citation | Yıldırım, A.A., Özdoğan, C. (2011). Parallel wavelet-based clustering algorithm on GPUs using CUDA. World Conference on Information Technology-Procedia Computer Science, 396-400. http://dx.doi.org/10.1016/j.procs.2010.12.066 | en_US |
dc.identifier.doi | 10.1016/j.procs.2010.12.066 | |
dc.identifier.issn | 1877-0509 | |
dc.identifier.scopus | 2-s2.0-79952511618 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1016/j.procs.2010.12.066 | |
dc.identifier.volume | 3 | en_US |
dc.identifier.wos | WOS:000299159800064 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.ispartof | 1st World Conference on Information Technology (WCIT) -- OCT 06-10, 2010 -- Bahcesehir Univ, Istanbul, TURKEY | en_US |
dc.relation.ispartofseries | Procedia Computer Science | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 12 | |
dc.subject | Gpu Computing | en_US |
dc.subject | Cuda | en_US |
dc.subject | Cluster Analysis | en_US |
dc.subject | Wavecluster Algorithm | en_US |
dc.title | Parallel wavelet-based clustering algorithm on GPUs using CUDA | tr_TR |
dc.title | Parallel Wavelet-Based Clustering Algorithm on Gpus Using Cuda | en_US |
dc.type | Conference Object | en_US |
dc.wos.citedbyCount | 5 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ea22b624-d90d-48d1-b3d1-addccc6b280d | |
relation.isAuthorOfPublication.latestForDiscovery | ea22b624-d90d-48d1-b3d1-addccc6b280d | |
relation.isOrgUnitOfPublication | c26f9572-660d-46b5-a627-8e3068321c89 | |
relation.isOrgUnitOfPublication.latestForDiscovery | c26f9572-660d-46b5-a627-8e3068321c89 |