Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Parallel wavelet-based clustering algorithm on GPUs using CUDA

dc.authorid Yildirim, Ahmet Artu/0000-0001-6555-765X
dc.authorid Ozdogan, Cem/0000-0002-9644-0013
dc.authorscopusid 37058218500
dc.authorscopusid 7801368240
dc.authorwosid Ozdogan, Cem/L-2685-2013
dc.contributor.author Yildirim, Ahmet Artu
dc.contributor.author Özdoğan, Cem
dc.contributor.author Ozdogan, Cem
dc.contributor.other Ortak Dersler Bölümü
dc.date.accessioned 2016-06-22T09:02:36Z
dc.date.available 2016-06-22T09:02:36Z
dc.date.issued 2011
dc.department Çankaya University en_US
dc.department-temp [Yildirim, Ahmet Artu; Ozdogan, Cem] Cankaya Univ, Dept Comp Engn, TR-06530 Ankara, Turkey en_US
dc.description Yildirim, Ahmet Artu/0000-0001-6555-765X; Ozdogan, Cem/0000-0002-9644-0013 en_US
dc.description.abstract There has been a substantial interest in scientific and engineering computing community to speed up the CPU-intensive tasks on graphical processing units (GPUs) with the development of many-core GPUs as having very large memory bandwidth and computational power. Cluster analysis is a widely used technique for grouping a set of objects into classes of "similar" objects and commonly used in many fields such as data mining, bioinformatics and pattern recognition. WaveCluster defines the notion of cluster as a dense region consisting of connected components in the transformed feature space. In this study, we present the implementation of WaveCluster algorithm as a novel clustering approach based on wavelet transform to GPU level parallelization and investigate the parallel performance for very large spatial datasets. The CUDA implementations of two main sub-algorithms of WaveCluster approach; namely extraction of low-frequency component from the signal using wavelet transform and connected component labeling are presented. Then, the corresponding performance evaluations are reported for each sub-algorithm. Divide and conquer approach is followed on the implementation of wavelet transform and multi-pass sliding window approach on the implementation of connected component labeling. The maximum achieved speedup is found in kernel as 107x in the computation of extraction of the low-frequency component and 6x in the computation of connected component labeling with respect to the sequential algorithms running on the CPU. (C) 2010 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Guest Editor. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citation Yıldırım, A.A., Özdoğan, C. (2011). Parallel wavelet-based clustering algorithm on GPUs using CUDA. World Conference on Information Technology-Procedia Computer Science, 396-400. http://dx.doi.org/10.1016/j.procs.2010.12.066 en_US
dc.identifier.doi 10.1016/j.procs.2010.12.066
dc.identifier.issn 1877-0509
dc.identifier.scopus 2-s2.0-79952511618
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1016/j.procs.2010.12.066
dc.identifier.volume 3 en_US
dc.identifier.wos WOS:000299159800064
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.ispartof 1st World Conference on Information Technology (WCIT) -- OCT 06-10, 2010 -- Bahcesehir Univ, Istanbul, TURKEY en_US
dc.relation.ispartofseries Procedia Computer Science
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 12
dc.subject Gpu Computing en_US
dc.subject Cuda en_US
dc.subject Cluster Analysis en_US
dc.subject Wavecluster Algorithm en_US
dc.title Parallel wavelet-based clustering algorithm on GPUs using CUDA tr_TR
dc.title Parallel Wavelet-Based Clustering Algorithm on Gpus Using Cuda en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 5
dspace.entity.type Publication
relation.isAuthorOfPublication ea22b624-d90d-48d1-b3d1-addccc6b280d
relation.isAuthorOfPublication.latestForDiscovery ea22b624-d90d-48d1-b3d1-addccc6b280d
relation.isOrgUnitOfPublication c26f9572-660d-46b5-a627-8e3068321c89
relation.isOrgUnitOfPublication.latestForDiscovery c26f9572-660d-46b5-a627-8e3068321c89

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Özdoğan, Cem.pdf
Size:
203.55 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: