Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The Improved Thermal Efficiency of Prandtl-Eyring Hybrid Nanofluid Via Classical Keller Box Technique

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Portfolio

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Prandtl-Eyring hybrid nanofluid (P-EHNF) heat transfer and entropy generation were studied in this article. A slippery heated surface is used to test the flow and thermal transport properties of P-EHNF nanofluid. This investigation will also examine the effects of nano solid tubes morphologies, porosity materials, Cattaneo-Christov heat flow, and radiative flux. Predominant flow equations are written as partial differential equations (PDE). To find the solution, the PDEs were transformed into ordinary differential equations (ODEs), then the Keller box numerical approach was used to solve the ODEs. Single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) using Engine Oil (EO) as a base fluid are studied in this work. The flow, temperature, drag force, Nusselt amount, and entropy measurement visually show significant findings for various variables. Notably, the comparison of P-EHNF's (MWCNT-SWCNT/EO) heat transfer rate with conventional nanofluid (SWCNT-EO) results in ever more significant upsurges. Spherical-shaped nano solid particles have the highest heat transport, whereas lamina-shaped nano solid particles exhibit the lowest heat transport. The model's entropy increases as the size of the nanoparticles get larger. A similar effect is seen when the radiative flow and the Prandtl-Eyring variable-II are improved.

Description

Shahzad, Faisal/0000-0002-0188-5133; Mohd Nasir, Nor Ain Azeany/0000-0002-0857-0935; Ahmad, Sohail/0000-0001-9829-9917; Shahzad, Dr Muhammad Faisal/0000-0001-6971-9177

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Jamshed, Wasim...et.al. (2021). "The improved thermal efficiency of Prandtl–Eyring hybrid nanofluid via classical Keller box technique", Scientific Reports, Vol.11, No.1, pp.1-24.

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
28

Source

Volume

11

Issue

1

Start Page

End Page

PlumX Metrics
Citations

CrossRef : 13

Scopus : 31

PubMed : 3

Captures

Mendeley Readers : 11

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.77206891

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo