Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Local Fractional Variational Iteration Algorithms for the Parabolic Fokker-Planck Equation Defined on Cantor Sets

dc.contributor.author Srivastava, H.M.
dc.contributor.author Yang, X.-J.
dc.contributor.author Baleanu, D.
dc.contributor.authorID 56389 tr_TR
dc.date.accessioned 2022-06-15T11:29:50Z
dc.date.accessioned 2025-09-18T16:07:37Z
dc.date.available 2022-06-15T11:29:50Z
dc.date.available 2025-09-18T16:07:37Z
dc.date.issued 2015
dc.description.abstract In this article, we apply the local fractional variational iteration algorithms for solving the parabolic Fokker-Planck equation which is defined on Cantor sets. It is shown by comparing with the three LFVIAs that the LFVIA-II is the easiest to obtain the nondifferentiable solutions for linear local fractional partial differential equations. Several other related recent works dealing with local fractional derivative operators on Cantor sets are also indicated. © 2015 NSP. en_US
dc.description.publishedMonth 1
dc.identifier.citation Baleanu, Dumitru; Srivastava, Hari M.; Yang, Xiao-Jun (2015). "Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on cantor sets", Progress in Fractional Differentiation and Applications, Vol. 1, No. 1, pp. 1-10. en_US
dc.identifier.doi 10.12785/pfda/010101
dc.identifier.issn 2356-9336
dc.identifier.scopus 2-s2.0-84928410965
dc.identifier.uri https://doi.org/10.12785/pfda/010101
dc.identifier.uri https://hdl.handle.net/20.500.12416/14825
dc.language.iso en en_US
dc.publisher Natural Sciences Publishing en_US
dc.relation.ispartof Progress in Fractional Differentiation and Applications en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Approximate Solution en_US
dc.subject Cantor Sets en_US
dc.subject Local Fractional Derivative Operators en_US
dc.subject Parabolic Fokker-Planck Equation en_US
dc.title Local Fractional Variational Iteration Algorithms for the Parabolic Fokker-Planck Equation Defined on Cantor Sets en_US
dc.title Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on cantor sets tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 7005872966
gdc.author.scopusid 23152241800
gdc.author.scopusid 37006104500
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Baleanu D., Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, Ankara, TR-06530, Turkey, Institute of Space Science, Măgurle-Bucharest, R-077125, Romania; Srivastava H.M., Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, V8W 3R4, Canada; Yang X.-J., Department ofMathematics andMechanics, China University ofMining and Technology, Xuzhou, Jiangsu, 221008, China en_US
gdc.description.endpage 10 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1 en_US
gdc.description.volume 1 en_US
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 37
gdc.scopus.citedcount 37
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files