Local Fractional Variational Iteration Algorithms for the Parabolic Fokker-Planck Equation Defined on Cantor Sets
| dc.contributor.author | Srivastava, H.M. | |
| dc.contributor.author | Yang, X.-J. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.date.accessioned | 2022-06-15T11:29:50Z | |
| dc.date.accessioned | 2025-09-18T16:07:37Z | |
| dc.date.available | 2022-06-15T11:29:50Z | |
| dc.date.available | 2025-09-18T16:07:37Z | |
| dc.date.issued | 2015 | |
| dc.description.abstract | In this article, we apply the local fractional variational iteration algorithms for solving the parabolic Fokker-Planck equation which is defined on Cantor sets. It is shown by comparing with the three LFVIAs that the LFVIA-II is the easiest to obtain the nondifferentiable solutions for linear local fractional partial differential equations. Several other related recent works dealing with local fractional derivative operators on Cantor sets are also indicated. © 2015 NSP. | en_US |
| dc.description.publishedMonth | 1 | |
| dc.identifier.citation | Baleanu, Dumitru; Srivastava, Hari M.; Yang, Xiao-Jun (2015). "Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on cantor sets", Progress in Fractional Differentiation and Applications, Vol. 1, No. 1, pp. 1-10. | en_US |
| dc.identifier.doi | 10.12785/pfda/010101 | |
| dc.identifier.issn | 2356-9336 | |
| dc.identifier.scopus | 2-s2.0-84928410965 | |
| dc.identifier.uri | https://doi.org/10.12785/pfda/010101 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14825 | |
| dc.language.iso | en | en_US |
| dc.publisher | Natural Sciences Publishing | en_US |
| dc.relation.ispartof | Progress in Fractional Differentiation and Applications | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Approximate Solution | en_US |
| dc.subject | Cantor Sets | en_US |
| dc.subject | Local Fractional Derivative Operators | en_US |
| dc.subject | Parabolic Fokker-Planck Equation | en_US |
| dc.title | Local Fractional Variational Iteration Algorithms for the Parabolic Fokker-Planck Equation Defined on Cantor Sets | en_US |
| dc.title | Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on cantor sets | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 23152241800 | |
| gdc.author.scopusid | 37006104500 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Baleanu D., Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, Ankara, TR-06530, Turkey, Institute of Space Science, Măgurle-Bucharest, R-077125, Romania; Srivastava H.M., Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, V8W 3R4, Canada; Yang X.-J., Department ofMathematics andMechanics, China University ofMining and Technology, Xuzhou, Jiangsu, 221008, China | en_US |
| gdc.description.endpage | 10 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 1 | en_US |
| gdc.description.volume | 1 | en_US |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 37 | |
| gdc.scopus.citedcount | 37 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |