Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Weather Data Analysis and Sensor Fault Detection Using an Extended Iot Framework With Semantics, Big Data, and Machine Learning

dc.contributor.author Sezer, Omer Berat
dc.contributor.author Ozbayoglu, Murat
dc.contributor.author Dogdu, Erdogan
dc.contributor.author Onal, Aras Can
dc.date.accessioned 2020-03-19T13:06:02Z
dc.date.accessioned 2025-09-18T12:08:42Z
dc.date.available 2020-03-19T13:06:02Z
dc.date.available 2025-09-18T12:08:42Z
dc.date.issued 2017
dc.description Cisco; Elsevier; IEEE; IEEE Computer Society; The Mit Press en_US
dc.description Ozbayoglu, Murat/0000-0001-7998-5735 en_US
dc.description.abstract In recent years, big data and Internet of Things (IoT) implementations started getting more attention. Researchers focused on developing big data analytics solutions using machine learning models. Machine learning is a rising trend in this field due to its ability to extract hidden features and patterns even in highly complex datasets. In this study, we used our Big Data IoT Framework in a weather data analysis use case. We implemented weather clustering and sensor anomaly detection using a publicly available dataset. We provided the implementation details of each framework layer (acquisition, ETL, data processing, learning and decision) for this particular use case. Our chosen learning model within the library is Scikit-Learn based k-means clustering. The data analysis results indicate that it is possible to extract meaningful information from a relatively complex dataset using our framework. en_US
dc.identifier.citation Onal, Aras Can...et al. "Weather data analysis and sensor fault detection using an extended ıot framework with semantics, big data, and machine learning, 2017 IEEE International Conference On Big Data (Big Data), pp.2037-2046, (2017). en_US
dc.identifier.doi 10.1109/BigData.2017.8258150
dc.identifier.isbn 9781538627150
dc.identifier.issn 2639-1589
dc.identifier.scopus 2-s2.0-85047833066
dc.identifier.uri https://doi.org/10.1109/BigData.2017.8258150
dc.identifier.uri https://hdl.handle.net/123456789/11186
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof IEEE International Conference on Big Data (IEEE Big Data) -- DEC 11-14, 2017 -- Boston, MA en_US
dc.relation.ispartofseries IEEE International Conference on Big Data
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Internet Of Things en_US
dc.subject Machine Learning en_US
dc.subject Framework en_US
dc.subject Big Data Analytics en_US
dc.subject Weather Data Analysis en_US
dc.subject Anomaly Detection en_US
dc.subject Fault Detection en_US
dc.subject Clustering en_US
dc.title Weather Data Analysis and Sensor Fault Detection Using an Extended Iot Framework With Semantics, Big Data, and Machine Learning en_US
dc.title Weather data analysis and sensor fault detection using an extended ıot framework with semantics, big data, and machine learning tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Ozbayoglu, Murat/0000-0001-7998-5735
gdc.author.institutional Doğdu, Erdoğan
gdc.author.scopusid 57193615320
gdc.author.scopusid 57207586168
gdc.author.scopusid 57947593100
gdc.author.scopusid 6603501593
gdc.author.wosid Ozbayoglu, Murat/H-2328-2011
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Onal, Aras Can; Sezer, Omer Berat; Ozbayoglu, Murat] TOBB Univ Econ & Technol, Dept Comp Engn, TR-06560 Ankara, Turkey; [Dogdu, Erdogan] Cankaya Univ, Dept Comp Engn, TR-06790 Ankara, Turkey; [Dogdu, Erdogan] Georgia State Univ, Atlanta, GA 30302 USA en_US
gdc.description.endpage 2046 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 2037 en_US
gdc.description.volume 2018-January en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W2783371409
gdc.identifier.wos WOS:000428073702004
gdc.openalex.fwci 3.58081961
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 43
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 118
gdc.plumx.scopuscites 57
gdc.scopus.citedcount 57
gdc.wos.citedcount 34
relation.isAuthorOfPublication 0d453674-7998-4d57-a06c-03e13bb1e314
relation.isAuthorOfPublication.latestForDiscovery 0d453674-7998-4d57-a06c-03e13bb1e314
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files