Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Generalized fractional order bloch equation with extended delay

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

The fundamental description of relaxation (T-1 and T-2) in nuclear magnetic resonance (NMR) is provided by the Bloch equation, an integer-order ordinary differential equation that interrelates precession of magnetization with time-and space-dependent relaxation. In this paper, we propose a fractional order Bloch equation that includes an extended model of time delays. The fractional time derivative embeds in the Bloch equation a fading power law form of system memory while the time delay averages the present value of magnetization with an earlier one. The analysis shows different patterns in the stability behavior for T-1 and T-2 relaxation. The T-1 decay is stable for the range of delays tested (1 mu sec to 200 mu sec), while the T-2 relaxation in this extended model exhibits a critical delay (typically 100 mu sec to 200 mu sec) above which the system is unstable. Delays arise in NMR in both the system model and in the signal excitation and detection processes. Therefore, by adding extended time delay to the fractional derivative model for the Bloch equation, we believe that we can develop a more appropriate model for NMR resonance and relaxation.

Description

Keywords

Fractional Calculus, Bloch Equation, Delay

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Bhalekar, S...et al. (2012). Generalized fractional order bloch equation wıth extended delay. International Journal of Bifurcation And Chaos, 22(4), 1-15. http://dx.doi.org/10.1142/S021812741250071X

WoS Q

Scopus Q

Source

International Journal of Bifurcation And Chaos

Volume

22

Issue

4

Start Page

1

End Page

15