Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Generalized fractional order bloch equation with extended delay

dc.authorscopusid 24170858100
dc.authorscopusid 6602866231
dc.authorscopusid 7005872966
dc.authorscopusid 7005342618
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Bhalekar, S./D-7628-2011
dc.contributor.author Bhalekar, Sachin
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Daftardar-Gejji, Varsha
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Magin, Richard
dc.contributor.other Matematik
dc.date.accessioned 2017-02-21T12:15:02Z
dc.date.available 2017-02-21T12:15:02Z
dc.date.issued 2012
dc.department Çankaya University en_US
dc.department-temp [Bhalekar, Sachin; Daftardar-Gejji, Varsha] Univ Pune, Dept Math, Pune 411007, Maharashtra, India; [Bhalekar, Sachin] Shivaji Univ, Dept Math, Kolhapur 416004, Maharashtra, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Magin, Richard] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA en_US
dc.description.abstract The fundamental description of relaxation (T-1 and T-2) in nuclear magnetic resonance (NMR) is provided by the Bloch equation, an integer-order ordinary differential equation that interrelates precession of magnetization with time-and space-dependent relaxation. In this paper, we propose a fractional order Bloch equation that includes an extended model of time delays. The fractional time derivative embeds in the Bloch equation a fading power law form of system memory while the time delay averages the present value of magnetization with an earlier one. The analysis shows different patterns in the stability behavior for T-1 and T-2 relaxation. The T-1 decay is stable for the range of delays tested (1 mu sec to 200 mu sec), while the T-2 relaxation in this extended model exhibits a critical delay (typically 100 mu sec to 200 mu sec) above which the system is unstable. Delays arise in NMR in both the system model and in the signal excitation and detection processes. Therefore, by adding extended time delay to the fractional derivative model for the Bloch equation, we believe that we can develop a more appropriate model for NMR resonance and relaxation. en_US
dc.description.publishedMonth 4
dc.description.sponsorship Department of Science and Technology, N. Delhi, India [SR/S2/HEP-24/2009] en_US
dc.description.sponsorship Varsha Daftardar-Gejji acknowledges the Department of Science and Technology, N. Delhi, India for the research project (No. SR/S2/HEP-24/2009). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Bhalekar, S...et al. (2012). Generalized fractional order bloch equation wıth extended delay. International Journal of Bifurcation And Chaos, 22(4), 1-15. http://dx.doi.org/10.1142/S021812741250071X en_US
dc.identifier.doi 10.1142/S021812741250071X
dc.identifier.issn 0218-1274
dc.identifier.issn 1793-6551
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-84861209986
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1142/S021812741250071X
dc.identifier.volume 22 en_US
dc.identifier.wos WOS:000304248700006
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 44
dc.subject Fractional Calculus en_US
dc.subject Bloch Equation en_US
dc.subject Delay en_US
dc.title Generalized fractional order bloch equation with extended delay tr_TR
dc.title Generalized Fractional Order Bloch Equation With Extended Delay en_US
dc.type Article en_US
dc.wos.citedbyCount 35
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: