Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Comparison of Single Channel Indices for U-Net Based Segmentation of Vegetation in Satellite Images

dc.contributor.author Ulku, Irem
dc.contributor.author Barmpoutis, Panagiotis
dc.contributor.author Stathaki, Tania
dc.contributor.author Akagunduz, Erdem
dc.contributor.authorID 233834 tr_TR
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2021-06-11T10:36:16Z
dc.date.accessioned 2025-09-18T15:45:06Z
dc.date.available 2021-06-11T10:36:16Z
dc.date.available 2025-09-18T15:45:06Z
dc.date.issued 2020
dc.description Akagunduz, Erdem/0000-0002-0792-7306 en_US
dc.description.abstract Hyper-spectral satellite imagery, consisting of multiple visible or infrared bands, is extremely dense and weighty for deep operations. Regarding problems related to vegetation as, more specifically, tree segmentation, it is difficult to train deep architectures due to lack of large-scale satellite imagery. In this paper, we compare the success of different single channel indices, which are constructed from multiple bands, for the purpose of tree segmentation in a deep convolutional neural network ( CNN) architecture. The utilized indices are either hand-crafted such as excess green index (ExG) and normalized difference vegetation index (NDVI) or reconstructed from the visible bands using feature space transformation methods such as principle component analysis (PCA). For comparison, these features are fed to an identical CNN architecture, which is a standard U-Net-based symmetric encoder-decoder design with hierarchical skip connections and the segmentation success for each single index is recorded. Experimental results show that single bands, which are constructed from the vegetation indices and space transformations, can achieve similar segmentation performances as compared to that of the original multi-channel case. en_US
dc.description.sponsorship TUBITAK International Postdoctoral Grant, Turkey [2219] en_US
dc.description.sponsorship This work is supported by TUBITAK 2219 International Postdoctoral Grant, Turkey. en_US
dc.identifier.citation Ülkü, İrem...at all (2020). "Comparison of single channel indices for U-Net based segmentation of vegetation in satellite images", Twelfth International Conference on Machine Vision, 2019, Amsterdam, Netherlands (ICMV2019). en_US
dc.identifier.doi 10.1117/12.2556374
dc.identifier.isbn 9781510636446
dc.identifier.issn 0277-786X
dc.identifier.issn 1996-756X
dc.identifier.scopus 2-s2.0-85081174941
dc.identifier.uri https://doi.org/10.1117/12.2556374
dc.identifier.uri https://hdl.handle.net/20.500.12416/14481
dc.language.iso en en_US
dc.publisher Spie-int Soc Optical Engineering en_US
dc.relation.ispartof 12th International Conference on Machine Vision (ICMV) -- NOV 16-18, 2019 -- Amsterdam, NETHERLANDS en_US
dc.relation.ispartofseries Proceedings of SPIE
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hyper-Spectral Imagery en_US
dc.subject Vegetation Segmentation en_US
dc.subject Deep Convolutional Neural Networks en_US
dc.title Comparison of Single Channel Indices for U-Net Based Segmentation of Vegetation in Satellite Images en_US
dc.title Comparison of single channel indices for U-Net based segmentation of vegetation in satellite images tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Akagunduz, Erdem/0000-0002-0792-7306
gdc.author.scopusid 57219399185
gdc.author.scopusid 55973201200
gdc.author.scopusid 7003386658
gdc.author.scopusid 8331988500
gdc.author.wosid Stathaki, Tania/Adc-9453-2022
gdc.author.wosid Ulku,, Irem/Ahd-8857-2022
gdc.author.wosid Akagunduz, Erdem/W-1788-2018
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ulku, Irem; Barmpoutis, Panagiotis; Stathaki, Tania] Imperial Coll London, Dept Elect & Elect Engn, London, England; [Akagunduz, Erdem] Cankaya Univ, Dept Elect & Elect Engn, Ankara, Turkey en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.volume 11433 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W3003839924
gdc.identifier.wos WOS:000542922700045
gdc.openalex.fwci 0.72989191
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 5
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.wos.citedcount 5
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files