Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Artificial Intelligence in Dentistry

dc.contributor.author Cagiltay, Nergiz Ercil
dc.contributor.author Kılıçarslan, Mehmet Ali
dc.contributor.author Basmaci, Fulya
dc.date.accessioned 2025-09-05T15:56:50Z
dc.date.available 2025-09-05T15:56:50Z
dc.date.issued 2025
dc.description.abstract Today, with advanced technologies, collecting detailed and big data from the environment and analyzing it using intelligent techniques has become possible, providing important insights into phenomena as well as future predictions. Big data is characterized by its high volume, velocity, and variety. Here, the volume is the amount and size of the data, which is measured in terabytes, petabytes, exabytes, or zettabytes. Velocity is the offered form of big data, which can be batch, near-real-time, real-time, or streaming. Finally, variety is the structure of the big data, which can be structured, such as in relational or dimensional models, as in warehouses, or unstructured, which is stored without any organization. It can also be in semi-structured form, where the data is unstructured but there is some meta-data or some tags for describing the data. Today, these forms of data are being collected for different dental purposes in several formats, such as images, raw data, or coordinates. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1201/9781003531449-10
dc.identifier.isbn 9781032830513
dc.identifier.isbn 9781040439401
dc.identifier.scopus 2-s2.0-105013372915
dc.identifier.uri https://doi.org/10.1201/9781003531449-10
dc.identifier.uri https://hdl.handle.net/20.500.12416/10345
dc.language.iso en en_US
dc.publisher CRC Press en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Intelligence en_US
dc.subject Big Data en_US
dc.subject Advanced Technology en_US
dc.subject Dimensional Model en_US
dc.subject Future Predictions en_US
dc.subject High Volumes en_US
dc.subject Intelligent Techniques en_US
dc.subject Near-Real Time en_US
dc.subject Petabytes en_US
dc.subject Real- Time en_US
dc.subject Relational Modeling en_US
dc.subject Volume Velocities en_US
dc.subject Dentistry en_US
dc.title Artificial Intelligence in Dentistry en_US
dc.type Book Part en_US
dspace.entity.type Publication
gdc.author.institutional Çağıltay, Nergiz
gdc.author.scopusid 16237826800
gdc.author.scopusid 8885711600
gdc.author.scopusid 57836188900
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Cagiltay] Nergiz Ercil, Çankaya Üniversitesi, Ankara, Turkey; [Kılıçarslan] Mehmet Ali, Ankara Üniversitesi, Ankara, Turkey; [Basmaci] Fulya, Ankara Yildirim Beyazit University, Ankara, Turkey en_US
gdc.description.endpage 211 en_US
gdc.description.publicationcategory Kitap Bölümü - Uluslararası en_US
gdc.description.scopusquality N/A
gdc.description.startpage 193 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W6903427611
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.87
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isAuthorOfPublication 0fe960a2-8415-456a-bc2b-5423aa41f19c
relation.isAuthorOfPublication.latestForDiscovery 0fe960a2-8415-456a-bc2b-5423aa41f19c
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files