Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Minimal Doubly Resolving Sets of Certain Families of Toeplitz Graph

dc.contributor.author Jarad, Fahd
dc.contributor.author Zahid, Zohaib
dc.contributor.author Siddique, Imran
dc.contributor.author Ahmad, Muhammad
dc.contributor.authorID 234808 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-01-03T13:01:48Z
dc.date.accessioned 2025-09-18T12:48:11Z
dc.date.available 2024-01-03T13:01:48Z
dc.date.available 2025-09-18T12:48:11Z
dc.date.issued 2023
dc.description Ahmad, Muhammad/0000-0002-8989-2847 en_US
dc.description.abstract The doubly resolving sets are a natural tool to identify where diffusion occurs in a complicated network. Many real-world phenomena, such as rumour spreading on social networks, the spread of infectious diseases, and the spread of the virus on the internet, may be modelled using information diffusion in networks. It is obviously impractical to monitor every node due to cost and overhead limits because there are too many nodes in the network, some of which may be unable or unwilling to send information about their state. As a result, the source localization problem is to find the number of nodes in the network that best explains the observed diffusion. This problem can be successfully solved by using its relationship with the well-studied related minimal doubly resolving set problem, which minimizes the number of observers required for accurate detection. This paper aims to investigate the minimal doubly resolving set for certain families of Toeplitz graph T-n(1, t), for t >= 2 and n >= t + 2. We come to the conclusion that for T-n(1, 2), the metric and double metric dimensions are equal and for T-n(1, 4), the double metric dimension is exactly one more than the metric dimension. Also, the double metric dimension for T-n(1, 3) is equal to the metric dimension for n = 5, 6, 7 and one greater than the metric dimension for n >= 8. en_US
dc.identifier.citation Ahmad, Muhammad;...et.al. (2023). "Minimal Doubly Resolving Sets of Certain Families of Toeplitz Graph", CMES - Computer Modeling in Engineering and Sciences, Vol.135, No.3, pp.2681-2696. en_US
dc.identifier.doi 10.32604/cmes.2023.022819
dc.identifier.issn 1526-1492
dc.identifier.issn 1526-1506
dc.identifier.scopus 2-s2.0-85143197315
dc.identifier.uri https://doi.org/10.32604/cmes.2023.022819
dc.identifier.uri https://hdl.handle.net/123456789/12010
dc.language.iso en en_US
dc.publisher Tech Science Press en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Family Of Toeplitz Graph en_US
dc.subject Resolving Sets en_US
dc.subject Metric Dimension en_US
dc.subject Doubly Resolving Sets en_US
dc.subject Double Metric Dimension en_US
dc.title Minimal Doubly Resolving Sets of Certain Families of Toeplitz Graph en_US
dc.title Minimal Doubly Resolving Sets of Certain Families of Toeplitz Graph tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ahmad, Muhammad/0000-0002-8989-2847
gdc.author.institutional Jarad, Fahd
gdc.author.scopusid 57218126164
gdc.author.scopusid 15622742900
gdc.author.scopusid 55973165600
gdc.author.scopusid 24436604100
gdc.author.wosid Jarad, Fahd/T-8333-2018
gdc.author.wosid Siddique, Imran/Acg-3403-2022
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ahmad, Muhammad; Zahid, Zohaib; Siddique, Imran] Univ Management & Technol, Dept Math, Lahore 54770, Pakistan; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkiye; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan en_US
gdc.description.endpage 2696 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 2681 en_US
gdc.description.volume 135 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4309734156
gdc.identifier.wos WOS:000924481700029
gdc.openalex.fwci 0.26334776
gdc.openalex.normalizedpercentile 0.53
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 0
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files