A Fractional Derivative With Two Singular Kernels and Application To a Heat Conduction Problem
| dc.contributor.author | Jleli, Mohamed | |
| dc.contributor.author | Kumar, Sunil | |
| dc.contributor.author | Samet, Bessem | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.date.accessioned | 2021-01-08T12:47:19Z | |
| dc.date.accessioned | 2025-09-18T16:06:58Z | |
| dc.date.available | 2021-01-08T12:47:19Z | |
| dc.date.available | 2025-09-18T16:06:58Z | |
| dc.date.issued | 2020 | |
| dc.description | Kumar, Dr. Sunil/0000-0003-0620-1068 | en_US |
| dc.description.abstract | In this article, we suggest a new notion of fractional derivative involving two singular kernels. Some properties related to this new operator are established and some examples are provided. We also present some applications to fractional differential equations and propose a numerical algorithm based on a Picard iteration for approximating the solutions. Finally, an application to a heat conduction problem is given. | en_US |
| dc.description.sponsorship | King Saud University, Riyadh, Saudi Arabia [RSP-2019/57] | en_US |
| dc.description.sponsorship | Researchers Supporting Project RSP-2019/57, King Saud University, Riyadh, Saudi Arabia. | en_US |
| dc.identifier.citation | Baleanu, Dumitru...et al. (2020). "A fractional derivative with two singular kernels and application to a heat conduction problem", Advances in Difference Equations, Vol. 2020, No. 1. | en_US |
| dc.identifier.doi | 10.1186/s13662-020-02684-z | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85085470259 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-020-02684-z | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14644 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Derivative | en_US |
| dc.subject | Two Singular Kernels | en_US |
| dc.subject | Picard Iteration | en_US |
| dc.subject | Heat Conduction Problem | en_US |
| dc.title | A Fractional Derivative With Two Singular Kernels and Application To a Heat Conduction Problem | en_US |
| dc.title | A fractional derivative with two singular kernels and application to a heat conduction problem | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Kumar, Dr. Sunil/0000-0003-0620-1068 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 23012064600 | |
| gdc.author.scopusid | 55793190461 | |
| gdc.author.scopusid | 55884062400 | |
| gdc.author.wosid | , Bessem/Afp-9481-2022 | |
| gdc.author.wosid | Jleli, Mohamed/D-5799-2015 | |
| gdc.author.wosid | Kumar, Sunil/P-7519-2015 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Dept Med Res, Magurele, Romania; [Jleli, Mohamed; Samet, Bessem] King Saud Univ, Dept Math, Coll Sci, Riyadh, Saudi Arabia; [Kumar, Sunil] Natl Inst Technol, Dept Math, Jharkhand, India | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2020 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3029442548 | |
| gdc.identifier.wos | WOS:000537951400002 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 40.0 | |
| gdc.oaire.influence | 4.5799453E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Financial economics | |
| gdc.oaire.keywords | Composite material | |
| gdc.oaire.keywords | Fractional Differential Equations | |
| gdc.oaire.keywords | Economics | |
| gdc.oaire.keywords | Heat conduction problem | |
| gdc.oaire.keywords | Operator (biology) | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Biochemistry | |
| gdc.oaire.keywords | Gene | |
| gdc.oaire.keywords | Convergence Analysis of Iterative Methods for Nonlinear Equations | |
| gdc.oaire.keywords | Differential equation | |
| gdc.oaire.keywords | Picard iteration | |
| gdc.oaire.keywords | Two singular kernels | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Thermal conduction | |
| gdc.oaire.keywords | Functional Differential Equations | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Heat equation | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Partial differential equation | |
| gdc.oaire.keywords | Fractional derivative | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Materials science | |
| gdc.oaire.keywords | Fractional Derivatives | |
| gdc.oaire.keywords | Chemistry | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Derivative (finance) | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Repressor | |
| gdc.oaire.keywords | Fractional Calculus | |
| gdc.oaire.keywords | Transcription factor | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Ordinary differential equation | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | Iteration of real functions in one variable | |
| gdc.oaire.keywords | fractional derivative | |
| gdc.oaire.keywords | heat conduction problem | |
| gdc.oaire.keywords | two singular kernels | |
| gdc.oaire.keywords | Functional-differential equations with fractional derivatives | |
| gdc.oaire.popularity | 2.6239869E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 1.95786956 | |
| gdc.openalex.normalizedpercentile | 0.9 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 40 | |
| gdc.plumx.crossrefcites | 21 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 64 | |
| gdc.publishedmonth | 5 | |
| gdc.scopus.citedcount | 63 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 38 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
