Hyers-Ulam Stability of Fractional Stochastic Differential Equations With Random Impulse
No Thumbnail Available
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Comenius Univ
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
The goal of this study is to derive a class of random impulsive fractional stochastic differential equations with finite delay that are of Caputo-type. Through certain constraints, the existence of the mild solution of the aforementioned system are acquired by Kransnoselskii's fixed point theorem. Furthermore, through Ito isometry and Gronwall's inequality, the Hyers-Ulam stability of the reckoned system is evaluated using Lipschitz condition.
Description
Keywords
Existence, Stability, Random Impulse, Fractional Stochastic Differential System, Kransnoselskii's Fixed Point Theorem, Hyers-Ulam Stability
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q4
Scopus Q
Q4
Source
Volume
91
Issue
4
Start Page
351
End Page
364
Google Scholar™
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

5
GENDER EQUALITY

7
AFFORDABLE AND CLEAN ENERGY

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES

11
SUSTAINABLE CITIES AND COMMUNITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

17
PARTNERSHIPS FOR THE GOALS
