Ulam Stability Results To a Class of Nonlinear Implicit Boundary Value Problems of Impulsive Fractional Differential Equations
| dc.contributor.author | Shah, K. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.author | Ali, A. | |
| dc.date.accessioned | 2020-01-15T14:02:17Z | |
| dc.date.accessioned | 2025-09-18T16:06:56Z | |
| dc.date.available | 2020-01-15T14:02:17Z | |
| dc.date.available | 2025-09-18T16:06:56Z | |
| dc.date.issued | 2019 | |
| dc.description | Ali, Arshad/0000-0001-7815-3849; Shah, Kamal/0000-0002-8851-4844 | en_US |
| dc.description.abstract | In this paper, we derive some sufficient conditions which ensure the existence and uniqueness of a solution for a class of nonlinear three point boundary value problems of fractional order implicit differential equations (FOIDEs) with some boundary and impulsive conditions. Also we investigate various types of Hyers-Ulam stability (HUS) for our concerned problem. Using classical fixed point theory and nonlinear functional analysis, we obtain the required conditions. In the last section we give an example to show the applicability of our obtained results. | en_US |
| dc.description.sponsorship | Department of Mathematics, Cankaya University, Etimesgut/Ankara, Turkey | en_US |
| dc.description.sponsorship | This research work has been financially supported by Prof. Dumitru Baleanu of the Department of Mathematics, Cankaya University, Etimesgut/Ankara, Turkey. | en_US |
| dc.identifier.citation | Ali, A.; Shah, K.; Baleanu, D., "Ulam stability results to a class of nonlinear implicit boundary value problems of impulsive fractional differential equations",Advances in Difference Equations, (January 2019). | en_US |
| dc.identifier.doi | 10.1186/s13662-018-1940-0 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85059761562 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-018-1940-0 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14633 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Caputo Derivative | en_US |
| dc.subject | Boundary Conditions | en_US |
| dc.subject | Hyers-Ulam Stability | en_US |
| dc.title | Ulam Stability Results To a Class of Nonlinear Implicit Boundary Value Problems of Impulsive Fractional Differential Equations | en_US |
| dc.title | Ulam stability results to a class of nonlinear implicit boundary value problems of impulsive fractional differential equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Ali, Arshad/0000-0001-7815-3849 | |
| gdc.author.id | Shah, Kamal/0000-0002-8851-4844 | |
| gdc.author.scopusid | 57207705048 | |
| gdc.author.scopusid | 56708052700 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Shah, Kamal/S-8662-2016 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Ali, A.; Shah, K.] Univ Malakand, Dept Math, Dir L, Khyber Pakhtunk, Pakistan; [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2019 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2947145332 | |
| gdc.identifier.wos | WOS:000455321300002 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 14.0 | |
| gdc.oaire.influence | 3.580377E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Artificial intelligence | |
| gdc.oaire.keywords | Class (philosophy) | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Quantum mechanics | |
| gdc.oaire.keywords | Caputo derivative | |
| gdc.oaire.keywords | Differential equation | |
| gdc.oaire.keywords | Machine learning | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Stability (learning theory) | |
| gdc.oaire.keywords | Fixed-point theorem | |
| gdc.oaire.keywords | Nonlinear Equations | |
| gdc.oaire.keywords | Boundary value problem | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Hyers–Ulam stability | |
| gdc.oaire.keywords | Impulsive Differential Equations | |
| gdc.oaire.keywords | Boundary conditions | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Partial differential equation | |
| gdc.oaire.keywords | Stability of Functional Equations in Mathematical Analysis | |
| gdc.oaire.keywords | Hyers-Ulam Stability | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Nonlinear system | |
| gdc.oaire.keywords | Uniqueness | |
| gdc.oaire.keywords | Fuzzy Stability | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Ordinary differential equation | |
| gdc.oaire.keywords | Fractional ordinary differential equations | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | boundary conditions | |
| gdc.oaire.keywords | Hyers-Ulam stability | |
| gdc.oaire.keywords | Boundary value problems with impulses for ordinary differential equations | |
| gdc.oaire.keywords | Nonlocal and multipoint boundary value problems for ordinary differential equations | |
| gdc.oaire.popularity | 7.834961E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 7.13255546 | |
| gdc.openalex.normalizedpercentile | 0.98 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 15 | |
| gdc.plumx.crossrefcites | 11 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 24 | |
| gdc.publishedmonth | 1 | |
| gdc.scopus.citedcount | 24 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 16 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
