Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Lossy Compressive Sensing Based on Online Dictionary Learning

dc.contributor.author Ulku, Irem
dc.contributor.author Kizgut, Ersin
dc.contributor.authorID 17575 tr_TR
dc.date.accessioned 2020-03-09T13:12:05Z
dc.date.accessioned 2025-09-18T16:07:36Z
dc.date.available 2020-03-09T13:12:05Z
dc.date.available 2025-09-18T16:07:36Z
dc.date.issued 2019
dc.description.abstract In this paper, a lossy compression of hyperspectral images is realized by using a novel online dictionary learning method in which three dimensional datasets can be compressed. This online dictionary learning method and blind compressive sensing (BCS) algorithm are combined in a hybrid lossy compression framework for the first time in the literature. According to the experimental results, BCS algorithm has the best compression performance when the compression bit rate is higher than or equal to 0.5 bps. Apart from observing rate-distortion performance, anomaly detection performance is also tested on the reconstructed images to measure the information preservation performance. en_US
dc.description.sponsorship Turkish Scientific and Technical Research Council en_US
dc.description.sponsorship The authors would like to thank the anonymous reviewers for their helpful and constructive comments that greatly contributed to improving the final version of the paper. The authors would also like to thank Prof. Dr. Halil T. Eyyuboglu for useful suggestions and comments. This research was partially supported by the Turkish Scientific and Technical Research Council. en_US
dc.identifier.citation Ulku, Irem; Kizgut, Ersin, "Lossy Compressive Sensing Based on Online Dictionary Learning", Computing and Informatics, Vol. 38, No. 1, pp. 151-172, (2019). en_US
dc.identifier.doi 10.31577/cai_2019_1_151
dc.identifier.issn 1335-9150
dc.identifier.scopus 2-s2.0-85072624741
dc.identifier.uri https://doi.org/10.31577/cai_2019_1_151
dc.identifier.uri https://hdl.handle.net/20.500.12416/14814
dc.language.iso en en_US
dc.publisher Slovak Acad Sciences inst informatics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hyperspectral Imaging en_US
dc.subject Compression Algorithms en_US
dc.subject Dictionary Learning en_US
dc.subject Sparse Coding en_US
dc.title Lossy Compressive Sensing Based on Online Dictionary Learning en_US
dc.title Lossy Compressive Sensing Based on Online Dictionary Learning tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Kızgut, Ersin
gdc.author.scopusid 57219399185
gdc.author.scopusid 57202685744
gdc.author.wosid Ulku,, Irem/Ahd-8857-2022
gdc.author.wosid Kızgut, Ersin/M-3074-2018
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ulku, Irem] Cankaya Univ, Dept Elect & Elect Engn, Eskisehir Yolu 29 Km, TR-06790 Ankara, Turkey; [Kizgut, Ersin] Univ Politecn Valencia, IUMPA, E-46071 Valencia, Spain en_US
gdc.description.endpage 172 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 151 en_US
gdc.description.volume 38 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W2947463302
gdc.identifier.wos WOS:000466028900006
gdc.openalex.fwci 0.64543682
gdc.openalex.normalizedpercentile 0.65
gdc.opencitations.count 4
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.wos.citedcount 1
relation.isAuthorOfPublication 9d459151-fe87-412f-a091-ad503b729344
relation.isAuthorOfPublication.latestForDiscovery 9d459151-fe87-412f-a091-ad503b729344
relation.isOrgUnitOfPublication ffcce87f-81ab-42d4-8e3d-c3681eb9db31
relation.isOrgUnitOfPublication 6a12b1e8-2e29-4fa5-84a5-1ce6f0505afe
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery ffcce87f-81ab-42d4-8e3d-c3681eb9db31

Files