Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A metaheuristic-guided machine learning approach for concrete strength prediction with high mix design variability using ultrasonic pulse velocity data

dc.contributor.authorS., Selçuk
dc.contributor.authorP., Tang
dc.date.accessioned2024-05-24T11:28:34Z
dc.date.available2024-05-24T11:28:34Z
dc.date.issued2023
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.description.abstractAssessment of concrete strength in existing structures is a common engineering problem. Several attempts in the literature showed the potential of ML methods for predicting concrete strength using concrete properties and NDT values as inputs. However, almost all such ML efforts based on NDT data trained models to predict concrete strength for a specific concrete mix design. We trained a global ML-based model that can predict concrete strength for a wide range of concrete types. This study uses data with high variability for training a metaheuristic-guided ANN model that can cover most concrete mixes used in practice. We put together a dataset that has large variations of mix design components. Training an ANN model using this dataset introduced significant test errors as expected. We optimized hyperparameters, architecture of the ANN model and performed feature selection using genetic algorithm. The proposed model reduces test errors from 9.3 MPa to 4.8 MPa. © 2023 The Authorsen_US
dc.description.publishedMonth10
dc.identifier.citationS., Selçuk; P., Tang (2023). "A metaheuristic-guided machine learning approach for concrete strength prediction with high mix design variability using ultrasonic pulse velocity data", Developments in the Built Environment, Vol. 15.en_US
dc.identifier.doi10.1016/j.dibe.2023.100220
dc.identifier.issn2666-1659
dc.identifier.urihttp://hdl.handle.net/20.500.12416/8400
dc.identifier.volume15en_US
dc.language.isoenen_US
dc.relation.ispartofDevelopments in the Built Environmenten_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectANNen_US
dc.subjectConcrete Strength Assessmenten_US
dc.subjectDeep Learningen_US
dc.subjectMetaheuristic Algorithmsen_US
dc.subjectNon Destructive Testingen_US
dc.subjectUltrasonic Pulse Velocityen_US
dc.titleA metaheuristic-guided machine learning approach for concrete strength prediction with high mix design variability using ultrasonic pulse velocity datatr_TR
dc.titleA Metaheuristic-Guided Machine Learning Approach for Concrete Strength Prediction With High Mix Design Variability Using Ultrasonic Pulse Velocity Dataen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: