Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A metaheuristic-guided machine learning approach for concrete strength prediction with high mix design variability using ultrasonic pulse velocity data

dc.authorid Selcuk, Seda/0000-0002-2046-3841
dc.authorid Tang, Pingbo/0000-0002-4910-1326
dc.authorscopusid 58622787300
dc.authorscopusid 24170157800
dc.authorwosid Selcuk, Seda/L-7692-2019
dc.contributor.author Selcuk, S.
dc.contributor.author Tang, P.
dc.date.accessioned 2024-05-24T11:28:34Z
dc.date.available 2024-05-24T11:28:34Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Selcuk, S.] Cankaya Univ, Civil Engn Dept NA17, Main Campus, Ankara, Turkiye; [Tang, P.] Carnegie Mellon Univ, Civil & Environm Engn Dept, Porter Hall,123F, Pittsburgh, PA 15213 USA en_US
dc.description Selcuk, Seda/0000-0002-2046-3841; Tang, Pingbo/0000-0002-4910-1326 en_US
dc.description.abstract Assessment of concrete strength in existing structures is a common engineering problem. Several attempts in the literature showed the potential of ML methods for predicting concrete strength using concrete properties and NDT values as inputs. However, almost all such ML efforts based on NDT data trained models to predict concrete strength for a specific concrete mix design. We trained a global ML-based model that can predict concrete strength for a wide range of concrete types. This study uses data with high variability for training a metaheuristic-guided ANN model that can cover most concrete mixes used in practice. We put together a dataset that has large variations of mix design components. Training an ANN model using this dataset introduced significant test errors as expected. We optimized hyperparameters, architecture of the ANN model and performed feature selection using genetic algorithm. The proposed model reduces test errors from 9.3 MPa to 4.8 MPa. en_US
dc.description.publishedMonth 10
dc.description.sponsorship Scientific and Technological Research Council of Turkey 2219-International Postdoctoral Research Fellowship Program for Turkish Citizens [2018/2, 1059B191802214] en_US
dc.description.sponsorship This work was supported through The Scientific and Technological Research Council of Turkey 2219-International Postdoctoral Research Fellowship Program for Turkish Citizens [grant number 2018/2, 1059B191802214]. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation S., Selçuk; P., Tang (2023). "A metaheuristic-guided machine learning approach for concrete strength prediction with high mix design variability using ultrasonic pulse velocity data", Developments in the Built Environment, Vol. 15. en_US
dc.identifier.doi 10.1016/j.dibe.2023.100220
dc.identifier.issn 2666-1659
dc.identifier.scopus 2-s2.0-85172695177
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.dibe.2023.100220
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:001079956100001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 8
dc.subject Ann en_US
dc.subject Ultrasonic Pulse Velocity en_US
dc.subject Deep Learning en_US
dc.subject Non Destructive Testing en_US
dc.subject Concrete Strength Assessment en_US
dc.subject Metaheuristic Algorithms en_US
dc.title A metaheuristic-guided machine learning approach for concrete strength prediction with high mix design variability using ultrasonic pulse velocity data tr_TR
dc.title A Metaheuristic-Guided Machine Learning Approach for Concrete Strength Prediction With High Mix Design Variability Using Ultrasonic Pulse Velocity Data en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: