Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Increasing accuracy of two-class pattern recognition with enhanced fuzzy functions

dc.authorid Celikyilmaz, Asli/0000-0002-2854-1445
dc.authorscopusid 35614300300
dc.authorscopusid 7006717125
dc.authorscopusid 24483208000
dc.authorscopusid 24482897800
dc.authorscopusid 14013450300
dc.contributor.author Celikyilmaz, Asli
dc.contributor.author Doğanay, Mehmet Mete
dc.contributor.author Tuerksen, I. Burhan
dc.contributor.author Aktas, Ramazan
dc.contributor.author Doganay, M. Mete
dc.contributor.author Ceylan, N. Basak
dc.contributor.authorID 122648 tr_TR
dc.contributor.authorID 1109 tr_TR
dc.contributor.authorID 112010 tr_TR
dc.contributor.authorID 108611 tr_TR
dc.contributor.other İşletme
dc.date.accessioned 2016-04-12T11:58:01Z
dc.date.available 2016-04-12T11:58:01Z
dc.date.issued 2009
dc.department Çankaya University en_US
dc.department-temp [Celikyilmaz, Asli; Tuerksen, I. Burhan] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada; [Tuerksen, I. Burhan; Aktas, Ramazan] TOBB Econ & Technol Univ, Ankara, Turkey; [Doganay, M. Mete] Cankaya Univ, Dept Business Adm, Ankara, Turkey; [Ceylan, N. Basak] Atilim Univ, Dept Business Adm, Ankara, Turkey en_US
dc.description Celikyilmaz, Asli/0000-0002-2854-1445 en_US
dc.description.abstract In building an approximate fuzzy classifier system, significant effort is laid oil estimation and fine tuning of fuzzy sets. However, in such systems little thought is given to the way in which membership functions are combined within fuzzy rules. In this paper, a robust method, improved fuzzy classifier functions (IFCF) design is proposed for two-class pattern recognition problems. A supervised hybrid improved fuzzy Clustering for classification (IFC-C) algorithm is implemented for structure identification. IFC-C algorithm is based oil it dual optimization method, which yields simultaneous estimates of the parameters of (c-classification functions together with fuzzy c partitioning of dataset based oil a distance measure. The merit of novel IFCF is that the information oil natural grouping of data samples i.e., the membership values, are utilized as additional predictors of each fuzzy classifier function to improve accuracy of system model. Improved fuzzy classifier functions are approximated using statistical and soft computing approaches. A new semi-non-parametric inference mechanism is implemented for reasoning. The experimental results Of the new modeling approach indicate that the new IFCF is it promising method for two-class pattern recognition problems. (c) 2007 Elsevier Ltd. All rights reserved. en_US
dc.description.publishedMonth 3
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Çelikyılmaz, A., Türkşen, İ.B., Aktaş, R., Doğanay, M.M., Ceylan, N.B. (2009). Increasing accuracy of two-class pattern recognition with enhanced fuzzy functions. Expert Systems with Applications, 36(2), 1337-1354. http://dx.doi.org/10.1016/j.eswa.2007.11.039 en_US
dc.identifier.doi 10.1016/j.eswa.2007.11.039
dc.identifier.endpage 1354 en_US
dc.identifier.issn 0957-4174
dc.identifier.issn 1873-6793
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-56649124794
dc.identifier.scopusquality Q1
dc.identifier.startpage 1337 en_US
dc.identifier.uri https://doi.org/10.1016/j.eswa.2007.11.039
dc.identifier.volume 36 en_US
dc.identifier.wos WOS:000262178000039
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 24
dc.subject Fuzzy Classification en_US
dc.subject Improved Fuzzy Clustering en_US
dc.subject Fuzzy Functions en_US
dc.subject Data Mining en_US
dc.subject Early Warning System en_US
dc.subject Decision Support Systems en_US
dc.title Increasing accuracy of two-class pattern recognition with enhanced fuzzy functions tr_TR
dc.title Increasing Accuracy of Two-Class Pattern Recognition With Enhanced Fuzzy Functions en_US
dc.type Article en_US
dc.wos.citedbyCount 19
dspace.entity.type Publication
relation.isAuthorOfPublication c7e7432b-c75f-4760-8c1b-a65578017166
relation.isAuthorOfPublication.latestForDiscovery c7e7432b-c75f-4760-8c1b-a65578017166
relation.isOrgUnitOfPublication 9b4a8eed-e4b0-49f2-bcc6-6d23bcbf1218
relation.isOrgUnitOfPublication.latestForDiscovery 9b4a8eed-e4b0-49f2-bcc6-6d23bcbf1218

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: