Fractional Wkb Approximation
| dc.contributor.author | Altarazi, Ibrahim M. A. | |
| dc.contributor.author | Muslih, Sami I. | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Rabei, Eqab M. | |
| dc.date.accessioned | 2016-05-03T08:13:56Z | |
| dc.date.accessioned | 2025-09-18T12:09:48Z | |
| dc.date.available | 2016-05-03T08:13:56Z | |
| dc.date.available | 2025-09-18T12:09:48Z | |
| dc.date.issued | 2009 | |
| dc.description.abstract | Wentzel-Kramer-Brillouin (WKB) approximation for fractional systems is investigated in this paper using the fractional calculus. In the fractional case, the wave function is constructed such that the phase factor is the same as the Hamilton's principle function S. To demonstrate our proposed approach, two examples are investigated in detail. | en_US |
| dc.description.sponsorship | Fulbright Foundation | en_US |
| dc.description.sponsorship | S. Muslih would like to thank the Fulbright Foundation for financial support. | en_US |
| dc.identifier.citation | Rabei, E.M...et al. (2009). Fractional WKB approximation. Nonlinear Dynamics, 57(1-2), 171-175. http://dx.doi.org/10.1007/s11071-008-9430-7 | en_US |
| dc.identifier.doi | 10.1007/s11071-008-9430-7 | |
| dc.identifier.issn | 0924-090X | |
| dc.identifier.issn | 1573-269X | |
| dc.identifier.scopus | 2-s2.0-67449115682 | |
| dc.identifier.uri | https://doi.org/10.1007/s11071-008-9430-7 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/11526 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Nonlinear Dynamics | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractional Derivative | en_US |
| dc.subject | Fractional Wkb Approximation | en_US |
| dc.subject | Hamilton'S Principle Function | en_US |
| dc.title | Fractional Wkb Approximation | en_US |
| dc.title | Fractional WKB approximation | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 6602156175 | |
| gdc.author.scopusid | 26653334100 | |
| gdc.author.scopusid | 7003657106 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Muslih, Sami/Aaf-4974-2020 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Muslih, Sami I.] So Illinois Univ, Carbondale, IL 62901 USA; [Altarazi, Ibrahim M. A.] Mutah Univ, Dept Phys, Al Karak, Jordan; [Rabei, Eqab M.] Al al Bayt Univ, Dept Phys, Mafraq 25113, Jordan; [Baleanu, Dumitru] Inst Space Sci, Bucharest 76900, Romania | en_US |
| gdc.description.endpage | 175 | en_US |
| gdc.description.issue | 1-2 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 171 | en_US |
| gdc.description.volume | 57 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W1998840749 | |
| gdc.identifier.wos | WOS:000266927100016 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 5.0 | |
| gdc.oaire.influence | 4.3450674E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | High Energy Physics - Theory | |
| gdc.oaire.keywords | High Energy Physics - Theory (hep-th) | |
| gdc.oaire.keywords | FOS: Physical sciences | |
| gdc.oaire.keywords | Mathematical Physics (math-ph) | |
| gdc.oaire.keywords | Mathematical Physics | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | fractional WKB approximation | |
| gdc.oaire.keywords | fractional derivative | |
| gdc.oaire.keywords | Hamilton's principle function | |
| gdc.oaire.keywords | Hamilton-Jacobi equations in mechanics | |
| gdc.oaire.popularity | 9.896592E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.97921178 | |
| gdc.openalex.normalizedpercentile | 0.76 | |
| gdc.opencitations.count | 18 | |
| gdc.plumx.crossrefcites | 8 | |
| gdc.plumx.mendeley | 9 | |
| gdc.plumx.scopuscites | 26 | |
| gdc.publishedmonth | 7 | |
| gdc.scopus.citedcount | 26 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 18 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
