Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Coreloss Estimation Via Long Short-Term Memory Model (Lstm) of Dry-Type Transformer Based on Fea

dc.contributor.author Yildiz, Berat
dc.contributor.author Tamyurek, Bunyamin
dc.contributor.author Iskender, Ires
dc.contributor.author Kul, Seda
dc.contributor.authorID 133746 tr_TR
dc.contributor.other 06.03. Elektrik-Elektronik Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-03-12T11:29:54Z
dc.date.accessioned 2025-09-18T13:26:01Z
dc.date.available 2024-03-12T11:29:54Z
dc.date.available 2025-09-18T13:26:01Z
dc.date.issued 2021
dc.description.abstract Accurate estimation of losses is very important in transformer designs for energy systems. Therefore, in this study, a long short-term memory model (LSTM) was performed to predict the core loss of three-phase dry-type transformers based on Finite Element Analysis (FEA) analysis. Since, in ordinary multilayer networks, learning problems occur when the gradient value gets too small during backpropagation. LSTM, on the other hand, can store information better thanks to its extra layers that communicate. Thus, the learning process takes place more efficiently. The analysis and estimation processes were performed using a primary number of turns, excitation voltage, and three different cross-section area parameters. 486 data randomly selected from 506 data obtained by ANSYS/MAXWELL in the training of the LSTM model were used. The remaining 20 data were used in the testing process to measure system performance. The error obtained by the validation test is 0.15. It is very close to the simulated value, thus LSTM can be used as a reliable estimation method during the design stage. en_US
dc.identifier.citation Kül, Seda...et al. "Coreloss Estimation via Long Short-Term Memory Model (LSTM) of Dry-Type Transformer based on FEA", 2021 10th International Conference on Renewable Energy Research and Application (ICRERA), 2021. en_US
dc.identifier.doi 10.1109/ICRERA52334.2021.9598631
dc.identifier.isbn 9781665445245
dc.identifier.issn 2377-6897
dc.identifier.scopus 2-s2.0-85123192245
dc.identifier.uri https://doi.org/10.1109/ICRERA52334.2021.9598631
dc.identifier.uri https://hdl.handle.net/123456789/12481
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof 10th IEEE International Conference on Renewable Energy Research and Applications (ICRERA) -- SEP 26-29, 2021 -- Istanbul, TURKEY en_US
dc.relation.ispartofseries International Conference on Renewable Energy Research and Applications
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Lstm en_US
dc.subject Estimation en_US
dc.subject Fea en_US
dc.subject Dry-Type Transformer en_US
dc.title Coreloss Estimation Via Long Short-Term Memory Model (Lstm) of Dry-Type Transformer Based on Fea en_US
dc.title Coreloss Estimation via Long Short-Term Memory Model (LSTM) of Dry-Type Transformer based on FEA tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional İskender, İres
gdc.author.scopusid 57511475700
gdc.author.scopusid 57201856798
gdc.author.scopusid 6507764969
gdc.author.scopusid 15019302900
gdc.author.wosid Iskender, Ires/Aak-8084-2020
gdc.author.wosid Tamyurek, Bunyamin/F-8393-2013
gdc.author.wosid Kul, Seda/Aak-5297-2021
gdc.author.wosid Yildiz, Berat/Lze-6641-2025
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Kul, Seda; Yildiz, Berat] Karamanoglu Mehmetbey Univ, Dept Elect & Elect Engn, Karaman, Turkey; [Tamyurek, Bunyamin] Gazi Univ, Dept Elect & Elect Engn, Ankara, Turkey; [Iskender, Ires] Cankaya Univ, Dept Elect & Elect Engn, Ankara, Turkey en_US
gdc.description.endpage 361 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 357 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W3217576691
gdc.identifier.wos WOS:000761616700060
gdc.openalex.fwci 0.27658519
gdc.openalex.normalizedpercentile 0.46
gdc.opencitations.count 3
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.wos.citedcount 6
relation.isAuthorOfPublication 2219cbd5-9b30-48e0-b360-4bc56c99320f
relation.isAuthorOfPublication.latestForDiscovery 2219cbd5-9b30-48e0-b360-4bc56c99320f
relation.isOrgUnitOfPublication a8b0a996-7c01-41a1-85be-843ba585ef45
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery a8b0a996-7c01-41a1-85be-843ba585ef45

Files