Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Machine Learning-Based Efficiency Prediction of Francis Type Hydraulic Turbines Through Comprehensive Performance Testing

dc.contributor.author Besni, Ferdi
dc.contributor.author Buyuksolak, Fevzi
dc.contributor.author Ayli, Ece
dc.contributor.author Celebioglu, Kutay
dc.contributor.author Aradag, Selin
dc.contributor.author Tascioglu, Yigit
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-07-06T00:51:08Z
dc.date.accessioned 2025-09-18T12:06:25Z
dc.date.available 2025-07-06T00:51:08Z
dc.date.available 2025-09-18T12:06:25Z
dc.date.issued 2025
dc.description.abstract In this study, the rehabilitation works carried out for the KEPEZ HPP, which has been in operation for over 50 years in Antalya, Turkey, is discussed. Within this scope, the existing turbine components are optimized using the CFD method, and a design that provides higher performance at the required flow rate and head is obtained. Analyses are performed using numerical methods to examine the behavior of the new turbine at different flow rates and heads, and a hill chart is created. In the second stage, model tests are carried out at the TOBB ETU HYDRO Water Turbine Design and Test Center in accordance with IEC60193 standards. Different ML methods are examined for their ability to predict turbine performance, following the development of the hydrid CFD-Experimental methodology. According to the authors knowledge, there is no study in the literature that combines experimental, numerical, and ML methods for turbines, and ML methods have not been applied before for Francis-type turbine performance prediction. The outcomes of the study contribute to the advancement of turbine design and optimization processes, offering valuable insights for the successful implementation of rehabilitation projects in the hydropower sector. en_US
dc.description.sponsorship TUBITAK KAMAG; Turkish Ministry of Development en_US
dc.description.sponsorship The experiments were performed using TOBB University of Economics and Technology Hydro Energy Research Center (ETU Hydro Laboratory) test facility constructed with a funding from the Turkish Ministry of Development. en_US
dc.identifier.doi 10.1177/09576509251352663
dc.identifier.issn 0957-6509
dc.identifier.issn 2041-2967
dc.identifier.scopus 2-s2.0-105009954792
dc.identifier.uri https://doi.org/10.1177/09576509251352663
dc.identifier.uri https://hdl.handle.net/123456789/10902
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Francis Turbine en_US
dc.subject CFD en_US
dc.subject Model Test en_US
dc.subject ANN en_US
dc.subject ML en_US
dc.title Machine Learning-Based Efficiency Prediction of Francis Type Hydraulic Turbines Through Comprehensive Performance Testing en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.scopusid 59979083100
gdc.author.scopusid 59543938600
gdc.author.scopusid 55371892800
gdc.author.scopusid 37661052300
gdc.author.scopusid 11440423900
gdc.author.scopusid 16231633500
gdc.author.wosid Celebioglu, Kutay/Aaw-8787-2020
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.author.wosid Tascioglu, Yigit/Lzg-2351-2025
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Besni, Ferdi; Buyuksolak, Fevzi; Celebioglu, Kutay] TOBB Univ Econ & Technol, Hydro Energy Res Lab, Ankara, Turkiye; [Ayli, Ece] Cankaya Univ, Dept Mech Engn, Eskisehir Rd,29th Km Yukariyurtcu Neighborhood, TR-06815 Ankara, Turkiye; [Aradag, Selin; Tascioglu, Yigit] TED Univ, Dept Mech Engn, Ankara, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4411407935
gdc.identifier.wos WOS:001511417600001
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.29
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication.latestForDiscovery cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files