Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Parallel data reduction techniques for big datasets

dc.contributor.authorÖzdoğan, Cem
dc.contributor.authorÖzdoğan, Cem
dc.contributor.authorWatson, Dan
dc.contributor.authorID40569tr_TR
dc.date.accessioned2022-12-02T11:35:02Z
dc.date.available2022-12-02T11:35:02Z
dc.date.issued2013
dc.departmentÇankaya Üniversitesi, Ortak Dersler, Fizik Bilim Dalıen_US
dc.description.abstractData reduction is perhaps the most critical component in retrieving information from big data (i.e., petascale-sized data) in many data-mining processes. The central issue of these data reduction techniques is to save time and bandwidth in enabling the user to deal with larger datasets even in minimal resource environments, such as in desktop or small cluster systems. In this chapter, the authors examine the motivations behind why these reduction techniques are important in the analysis of big datasets. Then they present several basic reduction techniques in detail, stressing the advantages and disadvantages of each. The authors also consider signal processing techniques for mining big data by the use of discrete wavelet transformation and server-side data reduction techniques. Lastly, they include a general discussion on parallel algorithms for data reduction, with special emphasis given to parallel waveletbased multi-resolution data reduction techniques on distributed memory systems using MPI and shared memory architectures on GPUs along with a demonstration of the improvement of performance and scalability for one case study.en_US
dc.description.publishedMonth10
dc.identifier.citationYıldırım, Ahmet Artu; Özdoğan, Cem; Watson, Dan (2013). "Parallel data reduction techniques for big datasets", Big Data Management, Technologies, and Applications, pp. 72-93.en_US
dc.identifier.doi10.4018/978-1-4666-4699-5.ch004
dc.identifier.endpage93en_US
dc.identifier.isbn9781466647008
dc.identifier.isbn1466646993
dc.identifier.issn9781466646995
dc.identifier.startpage72en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/5909
dc.language.isoenen_US
dc.relation.ispartofBig Data Management, Technologies, and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleParallel data reduction techniques for big datasetstr_TR
dc.titleParallel Data Reduction Techniques for Big Datasetsen_US
dc.typeBook Parten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationea22b624-d90d-48d1-b3d1-addccc6b280d
relation.isAuthorOfPublication.latestForDiscoveryea22b624-d90d-48d1-b3d1-addccc6b280d

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: