Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Parallel data reduction techniques for big datasets

No Thumbnail Available

Date

2013

Authors

Özdoğan, Cem
Watson, Dan

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Data reduction is perhaps the most critical component in retrieving information from big data (i.e., petascale-sized data) in many data-mining processes. The central issue of these data reduction techniques is to save time and bandwidth in enabling the user to deal with larger datasets even in minimal resource environments, such as in desktop or small cluster systems. In this chapter, the authors examine the motivations behind why these reduction techniques are important in the analysis of big datasets. Then they present several basic reduction techniques in detail, stressing the advantages and disadvantages of each. The authors also consider signal processing techniques for mining big data by the use of discrete wavelet transformation and server-side data reduction techniques. Lastly, they include a general discussion on parallel algorithms for data reduction, with special emphasis given to parallel waveletbased multi-resolution data reduction techniques on distributed memory systems using MPI and shared memory architectures on GPUs along with a demonstration of the improvement of performance and scalability for one case study.

Description

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Yıldırım, Ahmet Artu; Özdoğan, Cem; Watson, Dan (2013). "Parallel data reduction techniques for big datasets", Big Data Management, Technologies, and Applications, pp. 72-93.

WoS Q

Scopus Q

Source

Big Data Management, Technologies, and Applications

Volume

Issue

Start Page

72

End Page

93