Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On Hyers–Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

A human being standing upright with his feet as the pivot is the most popular example of the stabilized inverted pendulum. Achieving stability of the inverted pendulum has become common challenge for engineers. In this paper, we consider an initial value discrete fractional Duffing equation with forcing term. We establish the existence, Hyers–Ulam stability, and Hyers–Ulam Mittag-Leffler stability of solutions for the equation. We consider the inverted pendulum modeled by Duffing equation as an example. The values are tabulated and simulated to show the consistency with theoretical findings.

Description

Keywords

Fractional Duffing Equation, Hyers–Ulam Stability, Inverted Pendulum, Mittag-Leffler Function

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Selvam, A.G.M...et al. (2020). "On Hyers–Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum", Advances in Difference Equations, Vol. 2020, No. 1.

WoS Q

Scopus Q

Source

Advances in Difference Equations

Volume

2020

Issue

1

Start Page

End Page