Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On Hyers–Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorAlzabut, J.
dc.contributor.authorVignesh, D.
dc.contributor.authorAbbas, S.
dc.contributor.authorID56389tr_TR
dc.date.accessioned2022-10-11T11:48:03Z
dc.date.available2022-10-11T11:48:03Z
dc.date.issued2020
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractA human being standing upright with his feet as the pivot is the most popular example of the stabilized inverted pendulum. Achieving stability of the inverted pendulum has become common challenge for engineers. In this paper, we consider an initial value discrete fractional Duffing equation with forcing term. We establish the existence, Hyers–Ulam stability, and Hyers–Ulam Mittag-Leffler stability of solutions for the equation. We consider the inverted pendulum modeled by Duffing equation as an example. The values are tabulated and simulated to show the consistency with theoretical findings.en_US
dc.description.publishedMonth12
dc.identifier.citationSelvam, A.G.M...et al. (2020). "On Hyers–Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum", Advances in Difference Equations, Vol. 2020, No. 1.en_US
dc.identifier.doi10.1186/s13662-020-02920-6
dc.identifier.issn1687-1839
dc.identifier.issue1en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/5835
dc.identifier.volume2020en_US
dc.language.isoenen_US
dc.relation.ispartofAdvances in Difference Equationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFractional Duffing Equationen_US
dc.subjectHyers–Ulam Stabilityen_US
dc.subjectInverted Pendulumen_US
dc.subjectMittag-Leffler Functionen_US
dc.titleOn Hyers–Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulumtr_TR
dc.titleOn Hyers–ulam Mittag-Leffler Stability of Discrete Fractional Duffing Equation With Application on Inverted Pendulumen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: