Theoretical and Numerical Computations of Convexity Analysis for Fractional Differences Using Lower Boundedness
| dc.contributor.author | Al-Sarairah, Eman | |
| dc.contributor.author | Abdeljawad, Thabet | |
| dc.contributor.author | Chorfi, Nejmeddine | |
| dc.contributor.author | Mohammed, Pshtiwan Othman | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.date.accessioned | 2024-01-24T11:55:42Z | |
| dc.date.accessioned | 2025-09-18T13:26:21Z | |
| dc.date.available | 2024-01-24T11:55:42Z | |
| dc.date.available | 2025-09-18T13:26:21Z | |
| dc.date.issued | 2023 | |
| dc.description | Abdeljawad, Thabet/0000-0002-8889-3768; Mohammed, Pshtiwan/0000-0001-6837-8075 | en_US |
| dc.description.abstract | This study focuses on the analytical and numerical solutions of the convexity analysis for fractional differences with exponential and Mittag-Leffler kernels involving negative and nonnegative lower bounds. In the analytical part of the paper, we will give a new formula for del(2) of the discrete fractional differences, which can be useful to obtain the convexity results. The correlation between the nonnegativity and negativity of both of the discrete fractional differences, ((CFR)(a)del(alpha)f)(t) and ((ABR)(a)del(alpha)f)(t), with the convexity of the functions will be examined. In light of the main lemmas, we will define the two decreasing subsets of (2, 3), namely H-k,H-epsilon and M-k,M-epsilon. The decrease of these sets enables us to obtain the relationship between the negative lower bound of ((CFR)(a)del(alpha)f)(t) and the convexity of the function on a finite time set given by N-a+1(P) := {a + 1, a + 2,..., P}, for some P is an element of Na+1 := {a + 1, a + 2,...}. Besides, the numerical part of the paper is dedicated to examine the validity of the sets H-k,H- is an element of and M-k,M- is an element of in certain regions of the solutions for different values of k and is an element of. For this reason, we will illustrate the domain of the solutions by means of several figures in which the validity of the main theorems are explained. | en_US |
| dc.description.sponsorship | King Saud University, Riyadh, Saudi Arabia [RSP2023 R153] | en_US |
| dc.description.sponsorship | Researchers Supporting Project number (RSP2023 R153), King Saud University, Riyadh, Saudi Arabia. | en_US |
| dc.identifier.citation | Mohammed, Pshtiwan Othman ;...et.al. (2023). "Theoretıcal And Numerıcal Computatıons Of Convexıty Analysıs For Fractıonal Dıfferences Usıng Lower Boundedness", Fractals, Vol.31, No.8. | en_US |
| dc.identifier.doi | 10.1142/S0218348X23401837 | |
| dc.identifier.issn | 0218-348X | |
| dc.identifier.issn | 1793-6543 | |
| dc.identifier.scopus | 2-s2.0-85170219338 | |
| dc.identifier.uri | https://doi.org/10.1142/S0218348X23401837 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/12569 | |
| dc.language.iso | en | en_US |
| dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
| dc.relation.ispartof | Fractals | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Ab And Cf Fractional Differences | en_US |
| dc.subject | Convexity Analysis | en_US |
| dc.subject | Negative And Nonnegative Lower Bounds | en_US |
| dc.subject | Theoretical And Numerical Results | en_US |
| dc.title | Theoretical and Numerical Computations of Convexity Analysis for Fractional Differences Using Lower Boundedness | en_US |
| dc.title | Theoretical And Numerical Computations Of Convexity Analysis For Fractional Differences Using Lower Boundedness | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Abdeljawad, Thabet/0000-0002-8889-3768 | |
| gdc.author.id | Mohammed, Pshtiwan/0000-0001-6837-8075 | |
| gdc.author.scopusid | 57192416276 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 34967798000 | |
| gdc.author.scopusid | 6508051762 | |
| gdc.author.scopusid | 56019340900 | |
| gdc.author.wosid | Chorfi, Nejmeddine/I-5326-2018 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Abdeljawad, Thabet/T-8298-2018 | |
| gdc.author.wosid | Mohammed, Pshtiwan/Aaj-4673-2020 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Mohammed, Pshtiwan Othman] Univ Sulaimani, Dept Math, Coll Educ, Sulaimani 46001, Kurdistan Regio, Iraq; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, Bucharest R76900, Romania; [Baleanu, Dumitru] Lebanese Amer Univ, Sch Arts & Sci, Dept Nat Sci, Beirut 11022801, Lebanon; [Al-Sarairah, Eman] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates; [Baleanu, Dumitru; Al-Sarairah, Eman] Al Hussein Bin Talal Univ, Dept Math, POB 20, Maan 71111, Jordan; [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Sci, POB 66833, Riyadh 11586, Saudi Arabia; [Abdeljawad, Thabet] Kyung Hee Univ, Dept Math, 26 Kyungheedae Ro, Seoul 02447, South Korea; [Abdeljawad, Thabet] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Abdeljawad, Thabet] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Garankuwa, Medusa, South Africa; [Chorfi, Nejmeddine] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia | en_US |
| gdc.description.issue | 8 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.volume | 31 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4385272856 | |
| gdc.identifier.wos | WOS:001106071500006 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 2.6869058E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Financial economics | |
| gdc.oaire.keywords | Fractional Differential Equations | |
| gdc.oaire.keywords | Economics | |
| gdc.oaire.keywords | Set (abstract data type) | |
| gdc.oaire.keywords | Convex Functions | |
| gdc.oaire.keywords | Matrix Inequalities and Geometric Means | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Upper and lower bounds | |
| gdc.oaire.keywords | Fractional Integrals | |
| gdc.oaire.keywords | Convexity | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Domain (mathematical analysis) | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Exponential function | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Programming language | |
| gdc.oaire.keywords | Algorithm | |
| gdc.oaire.keywords | Fractional Derivatives | |
| gdc.oaire.keywords | Combinatorics | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Computation | |
| gdc.oaire.keywords | Fractional Calculus | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.popularity | 4.570268E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 1.05337163 | |
| gdc.openalex.normalizedpercentile | 0.71 | |
| gdc.opencitations.count | 4 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.scopus.citedcount | 3 | |
| gdc.virtual.author | Abdeljawad, Thabet | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
