Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Theoretical and Numerical Computations of Convexity Analysis for Fractional Differences Using Lower Boundedness

dc.contributor.author Al-Sarairah, Eman
dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Chorfi, Nejmeddine
dc.contributor.author Mohammed, Pshtiwan Othman
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2024-01-24T11:55:42Z
dc.date.accessioned 2025-09-18T13:26:21Z
dc.date.available 2024-01-24T11:55:42Z
dc.date.available 2025-09-18T13:26:21Z
dc.date.issued 2023
dc.description Abdeljawad, Thabet/0000-0002-8889-3768; Mohammed, Pshtiwan/0000-0001-6837-8075 en_US
dc.description.abstract This study focuses on the analytical and numerical solutions of the convexity analysis for fractional differences with exponential and Mittag-Leffler kernels involving negative and nonnegative lower bounds. In the analytical part of the paper, we will give a new formula for del(2) of the discrete fractional differences, which can be useful to obtain the convexity results. The correlation between the nonnegativity and negativity of both of the discrete fractional differences, ((CFR)(a)del(alpha)f)(t) and ((ABR)(a)del(alpha)f)(t), with the convexity of the functions will be examined. In light of the main lemmas, we will define the two decreasing subsets of (2, 3), namely H-k,H-epsilon and M-k,M-epsilon. The decrease of these sets enables us to obtain the relationship between the negative lower bound of ((CFR)(a)del(alpha)f)(t) and the convexity of the function on a finite time set given by N-a+1(P) := {a + 1, a + 2,..., P}, for some P is an element of Na+1 := {a + 1, a + 2,...}. Besides, the numerical part of the paper is dedicated to examine the validity of the sets H-k,H- is an element of and M-k,M- is an element of in certain regions of the solutions for different values of k and is an element of. For this reason, we will illustrate the domain of the solutions by means of several figures in which the validity of the main theorems are explained. en_US
dc.description.sponsorship King Saud University, Riyadh, Saudi Arabia [RSP2023 R153] en_US
dc.description.sponsorship Researchers Supporting Project number (RSP2023 R153), King Saud University, Riyadh, Saudi Arabia. en_US
dc.identifier.citation Mohammed, Pshtiwan Othman ;...et.al. (2023). "Theoretıcal And Numerıcal Computatıons Of Convexıty Analysıs For Fractıonal Dıfferences Usıng Lower Boundedness", Fractals, Vol.31, No.8. en_US
dc.identifier.doi 10.1142/S0218348X23401837
dc.identifier.issn 0218-348X
dc.identifier.issn 1793-6543
dc.identifier.scopus 2-s2.0-85170219338
dc.identifier.uri https://doi.org/10.1142/S0218348X23401837
dc.identifier.uri https://hdl.handle.net/20.500.12416/12569
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.ispartof Fractals
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Ab And Cf Fractional Differences en_US
dc.subject Convexity Analysis en_US
dc.subject Negative And Nonnegative Lower Bounds en_US
dc.subject Theoretical And Numerical Results en_US
dc.title Theoretical and Numerical Computations of Convexity Analysis for Fractional Differences Using Lower Boundedness en_US
dc.title Theoretical And Numerical Computations Of Convexity Analysis For Fractional Differences Using Lower Boundedness tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Abdeljawad, Thabet/0000-0002-8889-3768
gdc.author.id Mohammed, Pshtiwan/0000-0001-6837-8075
gdc.author.scopusid 57192416276
gdc.author.scopusid 7005872966
gdc.author.scopusid 34967798000
gdc.author.scopusid 6508051762
gdc.author.scopusid 56019340900
gdc.author.wosid Chorfi, Nejmeddine/I-5326-2018
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Abdeljawad, Thabet/T-8298-2018
gdc.author.wosid Mohammed, Pshtiwan/Aaj-4673-2020
gdc.author.yokid 56389
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Mohammed, Pshtiwan Othman] Univ Sulaimani, Dept Math, Coll Educ, Sulaimani 46001, Kurdistan Regio, Iraq; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, Bucharest R76900, Romania; [Baleanu, Dumitru] Lebanese Amer Univ, Sch Arts & Sci, Dept Nat Sci, Beirut 11022801, Lebanon; [Al-Sarairah, Eman] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates; [Baleanu, Dumitru; Al-Sarairah, Eman] Al Hussein Bin Talal Univ, Dept Math, POB 20, Maan 71111, Jordan; [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Sci, POB 66833, Riyadh 11586, Saudi Arabia; [Abdeljawad, Thabet] Kyung Hee Univ, Dept Math, 26 Kyungheedae Ro, Seoul 02447, South Korea; [Abdeljawad, Thabet] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Abdeljawad, Thabet] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Garankuwa, Medusa, South Africa; [Chorfi, Nejmeddine] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 31 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4385272856
gdc.identifier.wos WOS:001106071500006
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.6869058E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Financial economics
gdc.oaire.keywords Fractional Differential Equations
gdc.oaire.keywords Economics
gdc.oaire.keywords Set (abstract data type)
gdc.oaire.keywords Convex Functions
gdc.oaire.keywords Matrix Inequalities and Geometric Means
gdc.oaire.keywords Theory and Applications of Fractional Differential Equations
gdc.oaire.keywords Mathematical analysis
gdc.oaire.keywords Upper and lower bounds
gdc.oaire.keywords Fractional Integrals
gdc.oaire.keywords Convexity
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Anomalous Diffusion Modeling and Analysis
gdc.oaire.keywords Domain (mathematical analysis)
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Exponential function
gdc.oaire.keywords Applied mathematics
gdc.oaire.keywords Computer science
gdc.oaire.keywords Programming language
gdc.oaire.keywords Algorithm
gdc.oaire.keywords Fractional Derivatives
gdc.oaire.keywords Combinatorics
gdc.oaire.keywords Modeling and Simulation
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Computation
gdc.oaire.keywords Fractional Calculus
gdc.oaire.keywords Mathematics
gdc.oaire.popularity 4.570268E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 1.05337163
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 4
gdc.plumx.crossrefcites 1
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.virtual.author Abdeljawad, Thabet
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 4
relation.isAuthorOfPublication ab09a09b-0017-4ffe-a8fe-b9b0499b2c01
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery ab09a09b-0017-4ffe-a8fe-b9b0499b2c01
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files