Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Novel Difference Schemes for Analyzing the Fractional Navier- Stokese Quations

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Ovidius Univ Press

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In this report, a novel difference scheme is used to analyzing the Navier - Stokes problems of fractional order. Existence and uniqueness of the suggested approach with a Lipschitz condition and Picard theorem are proved. Furthermore, we find a discrete analogue of the derivative and then stability and convergence of our strategy in multi dimensional domain are proved.

Description

Keywords

Fractional Calculus, Difference Scheme, Navier - Stokes Equations, Riemann Liouville Fractional Derivative

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Sayevand, Khosro; Baleanu, Dumitru; Sahsavand, Fatemeh (2017). A novel difference schemes for analyzing the fractional Navier- Stokese quations, Analele Stiintifice Ale Universitatii Ovıdıus Constanta-Seria Matematica, 25(1), 195-206.

WoS Q

Q3

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Volume

25

Issue

1

Start Page

195

End Page

206
PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 1

Page Views

2

checked on Nov 29, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data is not available