Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hand Gesture Classification Using Inertial Based Sensors via a Neural Network

dc.contributor.authorAkan, Erhan
dc.contributor.authorTora, Hakan
dc.contributor.authorUslu, Baran
dc.contributor.authorID251470tr_TR
dc.date.accessioned2020-12-01T07:49:06Z
dc.date.available2020-12-01T07:49:06Z
dc.date.issued2017
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.description.abstractIn this study, a mobile phone equipped with four types of sensors namely, accelerometer, gyroscope, magnetometer and orientation, is used for gesture classification. Without feature selection, the raw data from the sensor outputs are processed and fed into a Multi-Layer Perceptron classifier for recognition. The user independent, single user dependent and multiple user dependent cases are all examined. Accuracy values of 91.66% for single user dependent case, 87.48% for multiple user dependent case and 60% for the user independent case are obtained. In addition, performance of each sensor is assessed separately and the highest performance is achieved with the orientation sensor.en_US
dc.identifier.citationAkan, Erhan; Tora, Hakan; Uslu, Baran. "Hand Gesture Classification Using Inertial Based Sensors via a Neural Network", Electronics, Circuits and Systems (ICECS), pp. 1-4, 2017.en_US
dc.identifier.endpage4en_US
dc.identifier.startpage1en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/4289
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofElectronics, Circuits and Systems (ICECS)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGesture Recognitionen_US
dc.subjectNeural Networken_US
dc.subjectAccelerometeren_US
dc.subjectMagnetometeren_US
dc.subjectGyroscopeen_US
dc.subjectOrientation Sensoren_US
dc.titleHand Gesture Classification Using Inertial Based Sensors via a Neural Networktr_TR
dc.titleHand Gesture Classification Using Inertial Based Sensors Via a Neural Networken_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: