Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Comparative Study of Artificial Neural Network Versus Parametric Method in Covid-19 Data Analysis

dc.contributor.author Colak, Andac Batur
dc.contributor.author Sindhu, Tabassum Naz
dc.contributor.author Lone, Showkat Ahmad
dc.contributor.author Alsubie, Abdelaziz
dc.contributor.author Jarad, Fahd
dc.contributor.author Shafiq, Anum
dc.contributor.authorID 234808 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-02-29T12:03:55Z
dc.date.accessioned 2025-09-18T16:08:30Z
dc.date.available 2024-02-29T12:03:55Z
dc.date.available 2025-09-18T16:08:30Z
dc.date.issued 2022
dc.description Colak, Andac Batur/0000-0001-9297-8134; Shafiq, Anum/0000-0001-7186-7216; Lone, Showkat Ahmad/0000-0001-7149-3314; Sindhu, Tabassum/0000-0001-9433-4981 en_US
dc.description.abstract Since the previous two years, a new coronavirus (COVID-19) has found a major global problem. The speedy pathogen over the globe was followed by a shockingly large number of afflicted people and a gradual increase in the number of deaths. If the survival analysis of active individuals can be predicted, it will help to contain the epidemic significantly in any area. In medical diagnosis, prognosis and survival analysis, neural networks have been found to be as successful as general nonlinear models. In this study, a real application has been developed for estimating the COVID-19 mortality rates in Italy by using two different methods, artificial neural network modeling and maximum likelihood estimation. The predictions obtained from the multilayer artificial neural network model developed with 9 neurons in the hidden layer were compared with the numerical results. The maximum deviation calculated for the artificial neural network model was -0.14% and the R value was 0.99836. The study findings confirmed that the two different statistical models that were developed had high reliability. en_US
dc.description.publishedMonth 7
dc.identifier.citation Shafiq, Anum;...et.al. (2022). "Comparative study of artificial neural network versus parametric method in COVID-19 data analysis", Results in Physics, Vol.38. en_US
dc.identifier.doi 10.1016/j.rinp.2022.105613
dc.identifier.issn 2211-3797
dc.identifier.scopus 2-s2.0-85130819263
dc.identifier.uri https://doi.org/10.1016/j.rinp.2022.105613
dc.identifier.uri https://hdl.handle.net/20.500.12416/15057
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Reliability Function en_US
dc.subject Maximum Likelihood Estimation en_US
dc.subject Artificial Neural Network en_US
dc.subject Failure Rate Function en_US
dc.title Comparative Study of Artificial Neural Network Versus Parametric Method in Covid-19 Data Analysis en_US
dc.title Comparative study of artificial neural network versus parametric method in COVID-19 data analysis tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Colak, Andac Batur/0000-0001-9297-8134
gdc.author.id Shafiq, Anum/0000-0001-7186-7216
gdc.author.id Lone, Showkat Ahmad/0000-0001-7149-3314
gdc.author.id Sindhu, Tabassum/0000-0001-9433-4981
gdc.author.institutional Jarad, Fahd
gdc.author.scopusid 57201708424
gdc.author.scopusid 57216657788
gdc.author.scopusid 57226867350
gdc.author.scopusid 56079695400
gdc.author.scopusid 57222178822
gdc.author.scopusid 15622742900
gdc.author.wosid Jarad, Fahd/T-8333-2018
gdc.author.wosid Colak, Andac Batur/Aav-3639-2020
gdc.author.wosid Shafiq, Anum/F-9967-2018
gdc.author.wosid Lone, Showkat Ahmad/Caa-0863-2022
gdc.author.wosid Sindhu, Tabassum/Aar-5257-2020
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Shafiq, Anum] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China; [Colak, Andac Batur] Nigde Omer Halisdemir Univ, Mech Engn Dept, Nigde, Turkey; [Sindhu, Tabassum Naz] Quaid I Azam Univ, Dept Stat, Islamabad 45320, Pakistan; [Lone, Showkat Ahmad; Alsubie, Abdelaziz] Saudi Elect Univ, Coll Sci & Theoret Studies, Dept Basic Sci, Riyadh 11673, Saudi Arabia; [Jarad, Fahd] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 38 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4280636474
gdc.identifier.pmid 35600673
gdc.identifier.wos WOS:000804942300006
gdc.openalex.fwci 10.80916938
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 47
gdc.plumx.crossrefcites 36
gdc.plumx.mendeley 36
gdc.plumx.pubmedcites 10
gdc.plumx.scopuscites 58
gdc.scopus.citedcount 58
gdc.wos.citedcount 59
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files