Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Phishing e-mail detection by using deep learning algorithms

dc.contributor.authorHassanpour, Reza
dc.contributor.authorDoğdu, Erdoğan
dc.contributor.authorChoupani, Roya
dc.contributor.authorGöker, Onur
dc.contributor.authorID21259tr_TR
dc.date.accessioned2020-11-30T11:26:27Z
dc.date.available2020-11-30T11:26:27Z
dc.date.issued2018
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractPhishing e-mails are considered as spam e-mails, which aim to collect sensitive personal information about the users via network. Since the main purpose of this behavior is mostly to harm users financially, it is vital to detect these phishing or spam e-mails immediately to prevent unauthorized access to users’ vital information. To detect phishing e-mails, using a quicker and robust classification method is important. Considering the billions of e-mails on the Internet, this classification process is supposed to be done in a limited time to analyze the results. In this work, we present some of the early results on the classification of spam email using deep learning and machine methods. We utilize word2vec to represent emails instead of using the popular keyword or other rule-based methods. Vector representations are then fed into a neural network to create a learning model. We have tested our method on an open dataset and found over 96% accuracy levels with the deep learning classification methods in comparison to the standard machine learning algorithms.en_US
dc.identifier.doi10.1145/3190645.3190719
dc.identifier.urihttp://hdl.handle.net/20.500.12416/4269
dc.language.isoenen_US
dc.relation.ispartofProc. of the ACMSE 2018 Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMachine Learningen_US
dc.subjectDeep Learningen_US
dc.subjectSupervised Learningen_US
dc.subjectClassificationen_US
dc.subjectMalware Detectionen_US
dc.titlePhishing e-mail detection by using deep learning algorithmstr_TR
dc.titlePhishing E-Mail Detection by Using Deep Learning Algorithmsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: