Inequalities for N-Class of Functions Using the Saigo Fractional Integral Operator
No Thumbnail Available
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
Springer-verlag Italia Srl
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
The role of fractional integral operators can be found as one of the best ways to generalize the classical inequalities. In this paper, we use the Saigo fractional integral operator to produce some inequalities for a class of n-decreasing positive functions. The results are more general than the available classical results in the literature.
Description
Alkhazzan, Abdulwasea/0000-0002-6504-8705; Tunc, Cemil/0000-0003-2909-8753; Khan, Hasib/0000-0002-7186-8435; Khan, Aziz/0000-0001-6185-9394
Keywords
Minkowski'S Inequality, Saigo Fractional Integral Operator, Integral Inequalities, Minkowski's inequality, Inequalities and extremum problems involving convexity in convex geometry, Saigo fractional integral operator, Inequalities for sums, series and integrals, integral inequalities, Variants of convex sets (star-shaped, (\(m, n\))-convex, etc.)
Turkish CoHE Thesis Center URL
Fields of Science
0101 mathematics, 01 natural sciences
Citation
Khan, Hasib...et al. (2019). "Inequalities for n-class of functions using the Saigo fractional integral operator", Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas, Vol. 113, No. 3, pp. 2407-2420.
WoS Q
Q1
Scopus Q
Q2

OpenCitations Citation Count
20
Source
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
Volume
113
Issue
3
Start Page
2407
End Page
2420
PlumX Metrics
Citations
CrossRef : 16
Scopus : 25
Captures
Mendeley Readers : 7
SCOPUS™ Citations
25
checked on Feb 03, 2026
Web of Science™ Citations
23
checked on Feb 03, 2026
Google Scholar™


