Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Detection of Hand Osteoarthritis From Hand Radiographs Using Convolutional Neural Networks With Transfer Learning

dc.contributor.author Erbay, Hasan
dc.contributor.author Maras, Hadi Hakan
dc.contributor.author Ureten, Kemal
dc.contributor.authorID 34410 tr_TR
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-04-01T12:13:22Z
dc.date.accessioned 2025-09-18T16:08:23Z
dc.date.available 2022-04-01T12:13:22Z
dc.date.available 2025-09-18T16:08:23Z
dc.date.issued 2020
dc.description Erbay, Hasan/0000-0002-7555-541X en_US
dc.description.abstract Osteoarthritis is the most common type of arthritis. Hand osteoarthritis leads to specific structural changes in the joints, such as asymmetric joint space narrowing and osteophytes (bone spurs). Conventional radiography has traditionally been the primary method of visualizing these structural changes and diagnosing osteoarthritis. We aimed to develop a computerized method that is capable of determining the structural changes seen in radiography of the hand and to assist practitioners in interpreting radiographic changes and diagnosing the disease. In this retrospective study, transfer-learning-based convolutional neural networks were trained on a randomly selected dataset containing 332 radiography images of hands from an original set of 420 and were validated with the remaining 88. Multilayer convolutional neural network models were designed based on a transfer learning method using pretrained AlexNet, GoogLeNet, and VGG-19 networks. The accuracies of the models were 93.2% for AlexNet, 94.3% for GoogLeNet, and 96.6% for VGG-19. The sensitivities of these models were 0.9167 for AlexNet, 0.9184 for GoogLeNet, and 0.9574 for VGG-19, while the specificity values were 0.9500, 0.9744, and 0.9756, respectively. The performance metrics, including accuracy, sensitivity, specificity, and precision, of our newly developed automated diagnosis methods are promising in the diagnosis of hand osteoarthritis. Our computer-aided detection systems may help physicians in interpreting hand radiography images, diagnosing osteoarthritis, and saving time. en_US
dc.identifier.citation Üreten, Kemal; Erbay, Hasan; Maraş, Hadi Hakan (2020). "Detection of hand osteoarthritis from hand radiographs using convolutional neural networks with transfer learning", Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 28, No. 5, pp. 2968-2978. en_US
dc.identifier.doi 10.3906/elk-1912-23
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.scopus 2-s2.0-85095737227
dc.identifier.uri https://doi.org/10.3906/elk-1912-23
dc.identifier.uri https://hdl.handle.net/20.500.12416/15051
dc.language.iso en en_US
dc.publisher Tubitak Scientific & Technological Research Council Turkey en_US
dc.relation.ispartof Turkish Journal of Electrical Engineering and Computer Sciences en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hand Osteoarthritis en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Transfer Learning en_US
dc.subject Conventional Hand Radiography en_US
dc.subject Classification en_US
dc.title Detection of Hand Osteoarthritis From Hand Radiographs Using Convolutional Neural Networks With Transfer Learning en_US
dc.title Detection of hand osteoarthritis from hand radiographs using convolutional neural networks with transfer learning tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Erbay, Hasan/0000-0002-7555-541X
gdc.author.institutional Maraş, Hadi Hakan
gdc.author.scopusid 6507776586
gdc.author.scopusid 55900695500
gdc.author.scopusid 56875440000
gdc.author.wosid Maras, Hakan/G-1236-2017
gdc.author.wosid Erbay, Hasan/F-1093-2016
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ureten, Kemal] Kirikkale Univ, Fac Med, Dept Rheumatol, Kirikkale, Turkey; [Ureten, Kemal; Maras, Hadi Hakan] Cankaya Univ, Fac Engn, Dept Comp Engn, Ankara, Turkey; [Erbay, Hasan] Univ Turkish Aeronaut Assoc, Fac Engn, Dept Comp Engn, Ankara, Turkey en_US
gdc.description.endpage 2978 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 2968 en_US
gdc.description.volume 28 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W3090156234
gdc.identifier.wos WOS:000576688200001
gdc.openalex.fwci 1.85115542
gdc.openalex.normalizedpercentile 0.83
gdc.opencitations.count 10
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 18
gdc.plumx.scopuscites 15
gdc.scopus.citedcount 14
gdc.wos.citedcount 10
relation.isAuthorOfPublication 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication.latestForDiscovery 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files