Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Design of a Voice Activity Detection Algorithm Based on Logarithmic Signal Energy

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

This article presents a new method for calculating the signal energies of speech segments in voice activity detection algorithms. In the study, the μ-law signal compression method is adapted to calculate short-term signal energies. A simple voice activity detection (VAD) algorithm is designed to demonstrate the effectiveness of the proposed method. The same VAD algorithm was also run with two different conventional energy calculation formulas and the performance of each VAD was evaluated using time-domain short-time energy features. The G729 standard VAD algorithm was also used for performance comparison. During the test of the analyzed detectors, many kinds of input speech signals with various types of background environmental noise, such as restaurants, vehicles, and streets, were tested. Using the new energy calculation method, the VAD detector has improved detection accuracy compared to VAD detectors based on the other two energy methods and was able to effectively identify voice-active regions even in noisy conditions at low SNR levels. The results revealed that the VAD detector designed with the proposed new energy calculation formula outperforms traditional energy-based voice activity detection methods and provides noticeable increases in detection rate even under adverse conditions. © 2022 IEEE.

Description

Keywords

Endpoint Detection, Feature Analysis, Signal Energy Calculation, Speech Analysis, Voice Activity Detection

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Özaydın, Selma. "Design of a Voice Activity Detection Algorithm based on Logarithmic Signal Energy", International Conference on Electrical and Computing Technologies and Applications (ICECTA), pp. 19-22, 2022.

WoS Q

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
N/A

Source

2022 International Conference on Electrical and Computing Technologies and Applications, ICECTA 2022 -- 2022 International Conference on Electrical and Computing Technologies and Applications, ICECTA 2022 -- 23 November 2022 through 25 November 2022 -- Ras Al Khaimah -- 185596

Volume

Issue

Start Page

19

End Page

22
PlumX Metrics
Citations

Scopus : 1

Patent Family : 1

Captures

Mendeley Readers : 2

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.19495729

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo