Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Comparison of Data Mining Algorithms for Emg Signals

dc.contributor.authorTaşkan Demirkok, Burcu
dc.contributor.authorElbaşı, Ersin
dc.date.accessioned2020-04-15T10:32:29Z
dc.date.available2020-04-15T10:32:29Z
dc.date.issued2018
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractThe aim of this study is to compare data mining algorithms and having a significant result using selected data mining algorithm on data which was collected during the "The Muscular Activity Analysis of Circumoral and Jaw-Closing Muscles Response To The Trainer on Patients With Class II Malocclusion Using Electromyogram" project. This document gives the accuracy rate of selected data mining algorithms on data set with using WEKA data mining tool.en_US
dc.identifier.citationTaskan Demirkok, Burcu; Elbasi, Ersin, "Comparison of Data Mining Algorithms for EMG Signals", Icecco'12: 9th International Conference On Electronics, Computer and Computation, pp. 45-48, (2012)en_US
dc.identifier.endpage48en_US
dc.identifier.startpage45en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/3138
dc.language.isoenen_US
dc.publisherTurgut Ozal Univen_US
dc.relation.ispartofIcecco'12: 9th International Conference On Electronics, Computer and Computationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData Miningen_US
dc.subjectData Mining Classification Algorithmsen_US
dc.subjectData Mining Clustering Algorithmsen_US
dc.subjectEMG Registrationsen_US
dc.subjectHerbst and Twin-Block Appliancesen_US
dc.subjectWEKA Data Mining Toolen_US
dc.titleComparison of Data Mining Algorithms for Emg Signalstr_TR
dc.titleComparison of Data Mining Algorithms for Emg Signalsen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: