Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A New Three-Step Root-Finding Numerical Method and Its Fractal Global Behavior

Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

There is an increasing demand for numerical methods to obtain accurate approximate solutions for nonlinear models based upon polynomials and transcendental equations under both single and multivariate variables. Keeping in mind the high demand within the scientific literature, we attempt to devise a new nonlinear three-step method with tenth-order convergence while using six functional evaluations (three functions and three first-order derivatives) per iteration. The method has an efficiency index of about 1.4678, which is higher than most optimal methods. Convergence analysis for single and systems of nonlinear equations is also carried out. The same is verified with the approximated computational order of convergence in the absence of an exact solution. To observe the global fractal behavior of the proposed method, different types of complex functions are considered under basins of attraction. When compared with various well-known methods, it is observed that the proposed method achieves prespecified tolerance in the minimum number of iterations while assuming different initial guesses. Nonlinear models include those employed in science and engineering, including chemical, electrical, biochemical, geometrical, and meteorological models.

Description

Keywords

Nonlinear Models, Efficiency Index, Computational Cost, Halley’s Method, Basin of Attraction, Computational Order of Convergence

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Tassaddiq, Asifa...et al. (2021). "A New Three-Step Root-Finding Numerical Method and Its Fractal Global Behavior", Fractal and Fractional, Vol. 5, No. 4.

WoS Q

Scopus Q

Source

Fractal and Fractional

Volume

5

Issue

4

Start Page

End Page