A New Three-Step Root-Finding Numerical Method and Its Fractal Global Behavior
dc.authorid | Qureshi, Sania/0000-0002-7225-2309 | |
dc.authorid | Tassaddiq, Asifa/0000-0002-6165-8055 | |
dc.authorid | Amanullah, Soomro/0000-0002-5823-0170 | |
dc.authorscopusid | 37056746000 | |
dc.authorscopusid | 57204460693 | |
dc.authorscopusid | 57226820219 | |
dc.authorscopusid | 26635282900 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 55613317300 | |
dc.authorwosid | Shaikh, Asif Ali/Jht-9084-2023 | |
dc.authorwosid | Soomro, Amanullah/Abg-3010-2021 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Tassaddiq, Asifa/W-6746-2019 | |
dc.authorwosid | Qureshi, Sania/R-6710-2018 | |
dc.authorwosid | Tassaddiq, Asifa/D-2860-2019 | |
dc.contributor.author | Tassaddiq, Asifa | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Qureshi, Sania | |
dc.contributor.author | Soomro, Amanullah | |
dc.contributor.author | Hincal, Evren | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Shaikh, Asif Ali | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-03-01T11:58:45Z | |
dc.date.available | 2022-03-01T11:58:45Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Tassaddiq, Asifa] Majmaah Univ, Coll Comp & Informat Sci, Dept Basic Sci & Humanities, Al Majmaah 11952, Saudi Arabia; [Qureshi, Sania; Soomro, Amanullah; Shaikh, Asif Ali] Mehran Univ Engn & Technol, Dept Basic Sci & Related Studies, Jamshoro 76062, Pakistan; [Qureshi, Sania; Hincal, Evren] Near East Univ TRCN, Dept Math, Mersin 10, TR-99138 Nicosia, Turkey; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Bucharest, Romania | en_US |
dc.description | Qureshi, Sania/0000-0002-7225-2309; Tassaddiq, Asifa/0000-0002-6165-8055; Amanullah, Soomro/0000-0002-5823-0170 | en_US |
dc.description.abstract | There is an increasing demand for numerical methods to obtain accurate approximate solutions for nonlinear models based upon polynomials and transcendental equations under both single and multivariate variables. Keeping in mind the high demand within the scientific literature, we attempt to devise a new nonlinear three-step method with tenth-order convergence while using six functional evaluations (three functions and three first-order derivatives) per iteration. The method has an efficiency index of about 1.4678, which is higher than most optimal methods. Convergence analysis for single and systems of nonlinear equations is also carried out. The same is verified with the approximated computational order of convergence in the absence of an exact solution. To observe the global fractal behavior of the proposed method, different types of complex functions are considered under basins of attraction. When compared with various well-known methods, it is observed that the proposed method achieves prespecified tolerance in the minimum number of iterations while assuming different initial guesses. Nonlinear models include those employed in science and engineering, including chemical, electrical, biochemical, geometrical, and meteorological models. | en_US |
dc.description.publishedMonth | 12 | |
dc.description.sponsorship | Ministry of Education in Saudi Arabia [IFP-2020-64] | en_US |
dc.description.sponsorship | FundingThis research did not receive any specific external funding. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Tassaddiq, Asifa...et al. (2021). "A New Three-Step Root-Finding Numerical Method and Its Fractal Global Behavior", Fractal and Fractional, Vol. 5, No. 4. | en_US |
dc.identifier.doi | 10.3390/fractalfract5040204 | |
dc.identifier.issn | 2504-3110 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85119159705 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.3390/fractalfract5040204 | |
dc.identifier.volume | 5 | en_US |
dc.identifier.wos | WOS:000736904900001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 16 | |
dc.subject | Nonlinear Models | en_US |
dc.subject | Efficiency Index | en_US |
dc.subject | Computational Cost | en_US |
dc.subject | Halley'S Method | en_US |
dc.subject | Basin Of Attraction | en_US |
dc.subject | Computational Order Of Convergence | en_US |
dc.title | A New Three-Step Root-Finding Numerical Method and Its Fractal Global Behavior | tr_TR |
dc.title | A New Three-Step Root-Finding Numerical Method and Its Fractal Global Behavior | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 15 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |