Positive Solutions To Fractional Boundary Value Problems With Nonlinear Boundary Conditions
Loading...
Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
Hindawi Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
We consider a system of boundary value problems for fractional differential equation given by D-0+(beta)phi(p)(d(0+)(alpha)u)(t) = lambda(1)a(1)(t)f(1)(u(t), v(t)), t is an element of (0, 1), D-0+(beta)phi(P)(D(0+)(alpha)v)(t) - lambda(2)a(2)(t)f(2)(u(t), v(t)), t is an element of (0, 1), where 1 < alpha, beta <= 2, 2 < alpha + beta <= 4, lambda(1), lambda(2) are eigenvalues, subject either to the boundary conditions D(0+)(alpha)u(0) = D(0+)(alpha)u(1) = 0, u(0) = 0, D(0+)(alpha)u(1) - Sigma(m-2)(i=1)a(1i) D(0+)(beta 1)u(xi(1i)) = 0, D(0+)(alpha)v(0) = D(0+)(alpha)v(1) =0, v(0) = 0, D(0+)(beta 1)v(1) - Sigma(m-2)(i=1)a(2i)D(0+)(beta 1)v(xi(2i)) = 0 or D(0+)(alpha)u(0) = D(0+)(alpha)u(1) = 0, u(0) = 0, D(0+)(beta 1)u(1) - Sigma(m-2)(i=1)a(1i)D(0+)(beta 1)u(xi(1i)) = psi(1)(u), D(0+)(alpha)v(0) = D(0+)(alpha)v(1) = 0, v(0) = 0, D(0+)(beta 1)v(1) - Sigma(m-2)(i=1)a(2i) D(0+)(beta 1)v(xi(2i)) = psi(2)(v) where 0 < beta(1) < 1, alpha - beta(1) - 1 > 0 and psi(1), psi(2) : C([0, 1]) -> [0, infinity) are continuous functions. The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for both fractional boundary value problems. As an application, an example is given to demonstrate some of main results.
Description
Nyamoradi, Nemat/0000-0002-4172-7658
ORCID
Keywords
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Nyamoradi, Nemat; Baleanu, Dumitru; Bashiri, Tahereh, "Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions", Abstract and Applied Analysis, (2013)
WoS Q
N/A
Scopus Q
Q2