Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Positive Solutions To Fractional Boundary Value Problems With Nonlinear Boundary Conditions

dc.authorid Nyamoradi, Nemat/0000-0002-4172-7658
dc.authorscopusid 24381820400
dc.authorscopusid 7005872966
dc.authorscopusid 55256197000
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Nyamoradi, Nemat
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Bashiri, Tahereh
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-04-02T14:41:35Z
dc.date.available 2020-04-02T14:41:35Z
dc.date.issued 2013
dc.department Çankaya University en_US
dc.department-temp [Nyamoradi, Nemat; Bashiri, Tahereh] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest 76900, Romania; [Baleanu, Dumitru] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia en_US
dc.description Nyamoradi, Nemat/0000-0002-4172-7658 en_US
dc.description.abstract We consider a system of boundary value problems for fractional differential equation given by D-0+(beta)phi(p)(d(0+)(alpha)u)(t) = lambda(1)a(1)(t)f(1)(u(t), v(t)), t is an element of (0, 1), D-0+(beta)phi(P)(D(0+)(alpha)v)(t) - lambda(2)a(2)(t)f(2)(u(t), v(t)), t is an element of (0, 1), where 1 < alpha, beta <= 2, 2 < alpha + beta <= 4, lambda(1), lambda(2) are eigenvalues, subject either to the boundary conditions D(0+)(alpha)u(0) = D(0+)(alpha)u(1) = 0, u(0) = 0, D(0+)(alpha)u(1) - Sigma(m-2)(i=1)a(1i) D(0+)(beta 1)u(xi(1i)) = 0, D(0+)(alpha)v(0) = D(0+)(alpha)v(1) =0, v(0) = 0, D(0+)(beta 1)v(1) - Sigma(m-2)(i=1)a(2i)D(0+)(beta 1)v(xi(2i)) = 0 or D(0+)(alpha)u(0) = D(0+)(alpha)u(1) = 0, u(0) = 0, D(0+)(beta 1)u(1) - Sigma(m-2)(i=1)a(1i)D(0+)(beta 1)u(xi(1i)) = psi(1)(u), D(0+)(alpha)v(0) = D(0+)(alpha)v(1) = 0, v(0) = 0, D(0+)(beta 1)v(1) - Sigma(m-2)(i=1)a(2i) D(0+)(beta 1)v(xi(2i)) = psi(2)(v) where 0 < beta(1) < 1, alpha - beta(1) - 1 > 0 and psi(1), psi(2) : C([0, 1]) -> [0, infinity) are continuous functions. The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for both fractional boundary value problems. As an application, an example is given to demonstrate some of main results. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Nyamoradi, Nemat; Baleanu, Dumitru; Bashiri, Tahereh, "Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions", Abstract and Applied Analysis, (2013) en_US
dc.identifier.doi 10.1155/2013/579740
dc.identifier.issn 1085-3375
dc.identifier.issn 1687-0409
dc.identifier.scopus 2-s2.0-84880157789
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1155/2013/579740
dc.identifier.wos WOS:000321656300001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Hindawi Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 6
dc.title Positive Solutions To Fractional Boundary Value Problems With Nonlinear Boundary Conditions tr_TR
dc.title Positive Solutions To Fractional Boundary Value Problems With Nonlinear Boundary Conditions en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dumitru Baleanu.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: