Positive Solutions To Fractional Boundary Value Problems With Nonlinear Boundary Conditions
dc.authorid | Nyamoradi, Nemat/0000-0002-4172-7658 | |
dc.authorscopusid | 24381820400 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 55256197000 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Nyamoradi, Nemat | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Bashiri, Tahereh | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-04-02T14:41:35Z | |
dc.date.available | 2020-04-02T14:41:35Z | |
dc.date.issued | 2013 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Nyamoradi, Nemat; Bashiri, Tahereh] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest 76900, Romania; [Baleanu, Dumitru] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia | en_US |
dc.description | Nyamoradi, Nemat/0000-0002-4172-7658 | en_US |
dc.description.abstract | We consider a system of boundary value problems for fractional differential equation given by D-0+(beta)phi(p)(d(0+)(alpha)u)(t) = lambda(1)a(1)(t)f(1)(u(t), v(t)), t is an element of (0, 1), D-0+(beta)phi(P)(D(0+)(alpha)v)(t) - lambda(2)a(2)(t)f(2)(u(t), v(t)), t is an element of (0, 1), where 1 < alpha, beta <= 2, 2 < alpha + beta <= 4, lambda(1), lambda(2) are eigenvalues, subject either to the boundary conditions D(0+)(alpha)u(0) = D(0+)(alpha)u(1) = 0, u(0) = 0, D(0+)(alpha)u(1) - Sigma(m-2)(i=1)a(1i) D(0+)(beta 1)u(xi(1i)) = 0, D(0+)(alpha)v(0) = D(0+)(alpha)v(1) =0, v(0) = 0, D(0+)(beta 1)v(1) - Sigma(m-2)(i=1)a(2i)D(0+)(beta 1)v(xi(2i)) = 0 or D(0+)(alpha)u(0) = D(0+)(alpha)u(1) = 0, u(0) = 0, D(0+)(beta 1)u(1) - Sigma(m-2)(i=1)a(1i)D(0+)(beta 1)u(xi(1i)) = psi(1)(u), D(0+)(alpha)v(0) = D(0+)(alpha)v(1) = 0, v(0) = 0, D(0+)(beta 1)v(1) - Sigma(m-2)(i=1)a(2i) D(0+)(beta 1)v(xi(2i)) = psi(2)(v) where 0 < beta(1) < 1, alpha - beta(1) - 1 > 0 and psi(1), psi(2) : C([0, 1]) -> [0, infinity) are continuous functions. The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for both fractional boundary value problems. As an application, an example is given to demonstrate some of main results. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Nyamoradi, Nemat; Baleanu, Dumitru; Bashiri, Tahereh, "Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions", Abstract and Applied Analysis, (2013) | en_US |
dc.identifier.doi | 10.1155/2013/579740 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.issn | 1687-0409 | |
dc.identifier.scopus | 2-s2.0-84880157789 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1155/2013/579740 | |
dc.identifier.wos | WOS:000321656300001 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Hindawi Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 6 | |
dc.title | Positive Solutions To Fractional Boundary Value Problems With Nonlinear Boundary Conditions | tr_TR |
dc.title | Positive Solutions To Fractional Boundary Value Problems With Nonlinear Boundary Conditions | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 6 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |