Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Parallel WaveCluster: A linear scaling parallel clustering algorithm implementation with application to very large datasets

dc.authorid Yildirim, Ahmet Artu/0000-0001-6555-765X
dc.authorid Ozdogan, Cem/0000-0002-9644-0013
dc.authorscopusid 37058218500
dc.authorscopusid 7801368240
dc.authorwosid Yildirim, Ahmet/Aae-9970-2020
dc.authorwosid Ozdogan, Cem/L-2685-2013
dc.contributor.author Yildirim, Ahmet Artu
dc.contributor.author Özdoğan, Cem
dc.contributor.author Ozdogan, Cem
dc.contributor.other Ortak Dersler Bölümü
dc.date.accessioned 2016-06-22T08:46:10Z
dc.date.available 2016-06-22T08:46:10Z
dc.date.issued 2011
dc.department Çankaya University en_US
dc.department-temp [Yildirim, Ahmet Artu; Ozdogan, Cem] Cankaya Univ, Dept Comp Engn, TR-06530 Ankara, Turkey en_US
dc.description Yildirim, Ahmet Artu/0000-0001-6555-765X; Ozdogan, Cem/0000-0002-9644-0013 en_US
dc.description.abstract A linear scaling parallel clustering algorithm implementation and its application to very large datasets for cluster analysis is reported. WaveCluster is a novel clustering approach based on wavelet transforms. Despite this approach has an ability to detect clusters of arbitrary shapes in an efficient way, it requires considerable amount of time to collect results for large sizes of multi-dimensional datasets. We propose the parallel implementation of the WaveCluster algorithm based on the message passing model for a distributed-memory multiprocessor system. In the proposed method, communication among processors and memory requirements are kept at minimum to achieve high efficiency. We have conducted the experiments on a dense dataset and a sparse dataset to measure the algorithm behavior appropriately. Our results obtained from performed experiments demonstrate that developed parallel WaveCluster algorithm exposes high speedup and scales linearly with the increasing number of processors. (C) 2011 Elsevier Inc. All rights reserved. en_US
dc.description.publishedMonth 7
dc.description.sponsorship Cankaya University en_US
dc.description.sponsorship This work was supported by Cankaya University. The computations were performed at the computation facility of Cankaya University. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Yıldırım, A.A., Özdoğan, C. (2011). Parallel WaveCluster: A linear scaling parallel clustering algorithm implementation with application to very large datasets. Journal of Parallel and Distributed Computing, 71(7), 955-962. http://dx.doi.org/10.1016/j.jpdc.2011.03.007 en_US
dc.identifier.doi 10.1016/j.jpdc.2011.03.007
dc.identifier.endpage 962 en_US
dc.identifier.issn 0743-7315
dc.identifier.issn 1096-0848
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-79957486794
dc.identifier.scopusquality Q1
dc.identifier.startpage 955 en_US
dc.identifier.uri https://doi.org/10.1016/j.jpdc.2011.03.007
dc.identifier.volume 71 en_US
dc.identifier.wos WOS:000291287900006
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 15
dc.subject Cluster Analysis en_US
dc.subject Wavecluster Algorithm en_US
dc.subject Parallel Wavecluster en_US
dc.title Parallel WaveCluster: A linear scaling parallel clustering algorithm implementation with application to very large datasets tr_TR
dc.title Parallel Wavecluster: a Linear Scaling Parallel Clustering Algorithm Implementation With Application To Very Large Datasets en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication ea22b624-d90d-48d1-b3d1-addccc6b280d
relation.isAuthorOfPublication.latestForDiscovery ea22b624-d90d-48d1-b3d1-addccc6b280d
relation.isOrgUnitOfPublication c26f9572-660d-46b5-a627-8e3068321c89
relation.isOrgUnitOfPublication.latestForDiscovery c26f9572-660d-46b5-a627-8e3068321c89

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: