Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Modified Jacobi-Bernstein Basis Transformation and Its Application To Multi-Degree Reduction of Bezier Curves

dc.contributor.author Doha, E. H.
dc.contributor.author Saker, M. A.
dc.contributor.author Baleanu, D.
dc.contributor.author Bhrawy, A. H.
dc.date.accessioned 2017-04-24T08:24:03Z
dc.date.accessioned 2025-09-18T15:44:12Z
dc.date.available 2017-04-24T08:24:03Z
dc.date.available 2025-09-18T15:44:12Z
dc.date.issued 2016
dc.description Doha, Eid/0000-0002-7781-6871; Saker, Mohamed/0000-0002-3496-0814 en_US
dc.description.abstract This paper reports new modified Jacobi polynomials (MJPs). We derive the basis transformation between MJPs and Bernstein polynomials and vice versa. This transformation is merging the perfect Least-square performance of the new polynomials together with the geometrical insight of Bernstein polynomials. The MJPs with indexes corresponding to the number of endpoints constraints are the natural basis functions for Least-square approximation of Bezier curves. Using MJPs leads us to deal with the constrained Jacobi polynomials and the unconstrained Jacobi polynomials as orthogonal polynomials. The MJPs are automatically satisfying the homogeneous boundary conditions. Thereby, the main advantage of using MJPs, in multi-degree reduction of Bezier curves on computer aided geometric design (CAGD), is that the constraints in CAGD are also satisfied and that decreases the steps of multi-degree reduction algorithm. Several numerical results for the multi-degree reduction of Bezier curves on CAGD are given. (C) 2016 Elsevier B.V. All rights reserved. en_US
dc.identifier.citation Bhrawy, A.H...et al. (2016). Modified Jacobi-Bernstein basis transformation and its application to multi-degree reduction of Bezier curves. Journal of Computational and Applied Mathematics, 302, 369-384. http://dx.doi.org/10.1016/j.cam.2016.01.009 en_US
dc.identifier.doi 10.1016/j.cam.2016.01.009
dc.identifier.issn 0377-0427
dc.identifier.issn 1879-1778
dc.identifier.scopus 2-s2.0-84960459852
dc.identifier.uri https://doi.org/10.1016/j.cam.2016.01.009
dc.identifier.uri https://hdl.handle.net/20.500.12416/14181
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.ispartof Journal of Computational and Applied Mathematics
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Basis Transformation en_US
dc.subject Modified Jacobi Polynomials en_US
dc.subject Bernstein Polynomials en_US
dc.subject Galerkin Orthogonal Polynomials en_US
dc.subject Multiple Degree Reduction Of Bezier Curves en_US
dc.title Modified Jacobi-Bernstein Basis Transformation and Its Application To Multi-Degree Reduction of Bezier Curves en_US
dc.title Modified Jacobi-Bernstein basis transformation and its application to multi-degree reduction of Bezier curves tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Doha, Eid/0000-0002-7781-6871
gdc.author.id Saker, Mohamed/0000-0002-3496-0814
gdc.author.scopusid 14319102000
gdc.author.scopusid 6602467804
gdc.author.scopusid 36698189000
gdc.author.scopusid 7005872966
gdc.author.wosid Doha, Eid/L-1723-2019
gdc.author.wosid Bhrawy, Ali/D-4745-2012
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Bhrawy, A. H.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt; [Doha, E. H.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Saker, M. A.] Modern Acad, Inst Informat Technol, Dept Basic Sci, Cairo, Egypt; [Baleanu, D.] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania en_US
gdc.description.endpage 384 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 369 en_US
gdc.description.volume 302 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2256476468
gdc.identifier.wos WOS:000374601100027
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 3.144647E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Galerkin orthogonal polynomials
gdc.oaire.keywords Computer-aided design (modeling of curves and surfaces)
gdc.oaire.keywords Approximation by polynomials
gdc.oaire.keywords modified Jacobi polynomials
gdc.oaire.keywords multiple degree reduction of Bézier curves
gdc.oaire.keywords basis transformation
gdc.oaire.keywords Bernstein polynomials
gdc.oaire.popularity 2.8891678E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 0.90254169
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 6
gdc.plumx.crossrefcites 5
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 6
gdc.publishedmonth 8
gdc.scopus.citedcount 6
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 4
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files