Artificial Neural Network Approach for a Class of Fractional Ordinary Differential Equation
| dc.contributor.author | Mokhtarpour, Masoumeh | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Jafarian, Ahmad | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2020-03-18T07:50:56Z | |
| dc.date.accessioned | 2025-09-18T12:48:55Z | |
| dc.date.available | 2020-03-18T07:50:56Z | |
| dc.date.available | 2025-09-18T12:48:55Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | The essential characteristic of artificial neural networks which against the logistic traditional systems is a data-based approach and has led a number of higher education scholars to investigate its efficacy, during the past few decades. The aim of this paper was concerned with the application of neural networks to approximate series solutions of a class of initial value ordinary differential equations of fractional orders, over a bounded domain. The proposed technique uses a suitable truncated power series of the solution function and transforms the original differential equation in a minimization problem. Then, the minimization problem is solved using an accurate neural network model to compute the parameters with high accuracy. Numerical results are given to validate the iterative method. | en_US |
| dc.description.publishedMonth | 4 | |
| dc.identifier.citation | Jafarian, Ahma; Mokhtarpour, Masoumeh; Baleanu, Dumitru, "Artificial neural network approach for a class of fractional ordinary differential equation", Neural Computing&Applications, Vol.28, No.4, pp.765-773, (2017). | en_US |
| dc.identifier.doi | 10.1007/s00521-015-2104-8 | |
| dc.identifier.issn | 0941-0643 | |
| dc.identifier.issn | 1433-3058 | |
| dc.identifier.scopus | 2-s2.0-84955603032 | |
| dc.identifier.uri | https://doi.org/10.1007/s00521-015-2104-8 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/12196 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer London Ltd | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Feed-Forward Neural Network | en_US |
| dc.subject | Fractional Differential Equation | en_US |
| dc.subject | Approximate Solution | en_US |
| dc.subject | Backpropagation Learning Algorithm | en_US |
| dc.title | Artificial Neural Network Approach for a Class of Fractional Ordinary Differential Equation | en_US |
| dc.title | Artificial neural network approach for a class of fractional ordinary differential equation | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 25031262700 | |
| gdc.author.scopusid | 57078986700 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Jafarian, Ahmad; Mokhtarpour, Masoumeh] Islamic Azad Univ, Urmia Branch, Dept Math, Orumiyeh, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Eskisehir Yolu 29 Km, TR-06810 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania | en_US |
| gdc.description.endpage | 773 | en_US |
| gdc.description.issue | 4 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 765 | en_US |
| gdc.description.volume | 28 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2304687139 | |
| gdc.identifier.wos | WOS:000398730400010 | |
| gdc.openalex.fwci | 3.05088989 | |
| gdc.openalex.normalizedpercentile | 0.94 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 61 | |
| gdc.plumx.crossrefcites | 55 | |
| gdc.plumx.mendeley | 29 | |
| gdc.plumx.scopuscites | 74 | |
| gdc.scopus.citedcount | 74 | |
| gdc.wos.citedcount | 59 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |