Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Artificial Neural Network Approach for a Class of Fractional Ordinary Differential Equation

dc.contributor.author Mokhtarpour, Masoumeh
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jafarian, Ahmad
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-03-18T07:50:56Z
dc.date.accessioned 2025-09-18T12:48:55Z
dc.date.available 2020-03-18T07:50:56Z
dc.date.available 2025-09-18T12:48:55Z
dc.date.issued 2017
dc.description.abstract The essential characteristic of artificial neural networks which against the logistic traditional systems is a data-based approach and has led a number of higher education scholars to investigate its efficacy, during the past few decades. The aim of this paper was concerned with the application of neural networks to approximate series solutions of a class of initial value ordinary differential equations of fractional orders, over a bounded domain. The proposed technique uses a suitable truncated power series of the solution function and transforms the original differential equation in a minimization problem. Then, the minimization problem is solved using an accurate neural network model to compute the parameters with high accuracy. Numerical results are given to validate the iterative method. en_US
dc.description.publishedMonth 4
dc.identifier.citation Jafarian, Ahma; Mokhtarpour, Masoumeh; Baleanu, Dumitru, "Artificial neural network approach for a class of fractional ordinary differential equation", Neural Computing&Applications, Vol.28, No.4, pp.765-773, (2017). en_US
dc.identifier.doi 10.1007/s00521-015-2104-8
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-84955603032
dc.identifier.uri https://doi.org/10.1007/s00521-015-2104-8
dc.identifier.uri https://hdl.handle.net/123456789/12196
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Feed-Forward Neural Network en_US
dc.subject Fractional Differential Equation en_US
dc.subject Approximate Solution en_US
dc.subject Backpropagation Learning Algorithm en_US
dc.title Artificial Neural Network Approach for a Class of Fractional Ordinary Differential Equation en_US
dc.title Artificial neural network approach for a class of fractional ordinary differential equation tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 25031262700
gdc.author.scopusid 57078986700
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Jafarian, Ahmad; Mokhtarpour, Masoumeh] Islamic Azad Univ, Urmia Branch, Dept Math, Orumiyeh, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Eskisehir Yolu 29 Km, TR-06810 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania en_US
gdc.description.endpage 773 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 765 en_US
gdc.description.volume 28 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2304687139
gdc.identifier.wos WOS:000398730400010
gdc.openalex.fwci 3.05088989
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 61
gdc.plumx.crossrefcites 55
gdc.plumx.mendeley 29
gdc.plumx.scopuscites 74
gdc.scopus.citedcount 74
gdc.wos.citedcount 59
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files