Predicting Flight Delays With Artificial Neural Networks: Case Study of an Airport
| dc.contributor.author | Demir, Engin | |
| dc.contributor.author | Demir, Vahap Burhan | |
| dc.contributor.other | 06.01. Bilgisayar Mühendisliği | |
| dc.contributor.other | 06. Mühendislik Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2025-05-13T13:41:54Z | |
| dc.date.available | 2025-05-13T13:41:54Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | Air transportation has an important place among transportation systems and it is indispensable for the flights to perform their voyages in scheduled time in order to ensure the comfort of passengers and controllability of operational costs. There are several reasons for flight delays like weather conditions, excessive intensity in air traffic, accidents or closed airfields, conditions that will lead to an increase in distances between planes and operational delays in ground services. In this study, using the data collected from the sensors located in the airport and the information about the flight, the goal is develop a machine learning model to estimate departure delays of flights using artificial neural networks. | en_US |
| dc.identifier.doi | 10.1109/SIU.2017.7960463 | |
| dc.identifier.isbn | 9781509064946 | |
| dc.identifier.issn | 2165-0608 | |
| dc.identifier.scopus | 2-s2.0-85026310560 | |
| dc.identifier.uri | https://doi.org/10.1109/SIU.2017.7960463 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/9963 | |
| dc.language.iso | tr | en_US |
| dc.publisher | Ieee | en_US |
| dc.relation.ispartof | 25th Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2017 -- Antalya, TURKEY | en_US |
| dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Flight Delay Estimation | en_US |
| dc.subject | Classification | en_US |
| dc.subject | Artificial Neural Networks | en_US |
| dc.subject | Feature Ranking | en_US |
| dc.title | Predicting Flight Delays With Artificial Neural Networks: Case Study of an Airport | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Demir, Engin | |
| gdc.author.scopusid | 57220741181 | |
| gdc.author.scopusid | 57195221864 | |
| gdc.author.wosid | Demir, Engin/D-1116-2013 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Demir, Engin] Cankaya Univ, Bilgisayar Muhendisligi Bolumu, Ankara, Turkey; [Demir, Vahap Burhan] Adalet Bakanligi, Bilgi Islem Dairesi Baskanligi, Ankara, Turkey | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W2725817861 | |
| gdc.identifier.wos | WOS:000413813100326 | |
| gdc.openalex.fwci | 3.24416572 | |
| gdc.openalex.normalizedpercentile | 0.94 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 9 | |
| gdc.plumx.mendeley | 8 | |
| gdc.plumx.scopuscites | 12 | |
| gdc.scopus.citedcount | 12 | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | 419a3f57-6297-46f1-88e0-538dc3c66e68 | |
| relation.isAuthorOfPublication.latestForDiscovery | 419a3f57-6297-46f1-88e0-538dc3c66e68 | |
| relation.isOrgUnitOfPublication | 12489df3-847d-4936-8339-f3d38607992f | |
| relation.isOrgUnitOfPublication | 43797d4e-4177-4b74-bd9b-38623b8aeefa | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 12489df3-847d-4936-8339-f3d38607992f |