Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A novel approach to approximate fractional derivative with uncertain conditions

Loading...
Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

This paper focuses on providing a new scheme to find the fuzzy approximate solution of fractional differential equations (FDEs) under uncertainty. The Caputo-type derivative base on the generalized Hukuhara differentiability is approximated by a linearization formula to reduce the corresponding uncertain FDE to an ODE under fuzzy concept. This new approach may positively affect on the computational cost and easily apply for the other types of uncertain fractional-order differential equation. The performed numerical simulations verify the proficiency of the presented scheme. (C) 2017 Published by Elsevier Ltd.

Description

Ahmadian, Ali/0000-0002-0106-7050; Salahshour, Soheil/0000-0003-1390-3551

Keywords

Fractional Differential Equations, Caputo-Type Derivative, Laplace Transforms, Basset Problem, Uncertainty

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ahmadian, A...et al. (2017). A novel approach to approximate fractional derivative with uncertain conditions Chaos Solitons & Fractals, 104, 68-76 .

WoS Q

Q1

Scopus Q

Q1

Source

Volume

104

Issue

Start Page

68

End Page

76