A novel approach to approximate fractional derivative with uncertain conditions
dc.authorid | Ahmadian, Ali/0000-0002-0106-7050 | |
dc.authorid | Salahshour, Soheil/0000-0003-1390-3551 | |
dc.authorscopusid | 55602202100 | |
dc.authorscopusid | 23028598900 | |
dc.authorscopusid | 58554202600 | |
dc.authorscopusid | 7005489073 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Salahshour, Soheil/K-4817-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Ahmadian, Ali/N-3697-2015 | |
dc.contributor.author | Ahmadian, A. | |
dc.contributor.author | Salahshour, S. | |
dc.contributor.author | Ali-Akbari, M. | |
dc.contributor.author | Ismail, F. | |
dc.contributor.author | Baleanu, D. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2019-12-10T07:05:06Z | |
dc.date.available | 2019-12-10T07:05:06Z | |
dc.date.issued | 2017 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Ahmadian, A.; Ismail, F.] Univ Putra Malaysia, Dept Math, Serdang 43400, Selangor, Malaysia; [Ahmadian, A.; Ismail, F.] Univ Putra Malaysia, Inst Math Res INSPEM, Serdang 43400, Selangor, Malaysia; [Salahshour, S.] Islamic Azad Univ, Mobarakeh Branch, Young Researchers & Elite Club, Mobarakeh, Iran; [Ali-Akbari, M.] Torbat Heydarieh Univ, Dept Comp Engn, Torbat Heydarieh, Iran; [Baleanu, D.] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania | en_US |
dc.description | Ahmadian, Ali/0000-0002-0106-7050; Salahshour, Soheil/0000-0003-1390-3551 | en_US |
dc.description.abstract | This paper focuses on providing a new scheme to find the fuzzy approximate solution of fractional differential equations (FDEs) under uncertainty. The Caputo-type derivative base on the generalized Hukuhara differentiability is approximated by a linearization formula to reduce the corresponding uncertain FDE to an ODE under fuzzy concept. This new approach may positively affect on the computational cost and easily apply for the other types of uncertain fractional-order differential equation. The performed numerical simulations verify the proficiency of the presented scheme. (C) 2017 Published by Elsevier Ltd. | en_US |
dc.description.publishedMonth | 11 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Ahmadian, A...et al. (2017). A novel approach to approximate fractional derivative with uncertain conditions Chaos Solitons & Fractals, 104, 68-76 . | en_US |
dc.identifier.doi | 10.1016/j.chaos.2017.07.026 | |
dc.identifier.endpage | 76 | en_US |
dc.identifier.issn | 0960-0779 | |
dc.identifier.issn | 1873-2887 | |
dc.identifier.scopus | 2-s2.0-85032875456 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 68 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.chaos.2017.07.026 | |
dc.identifier.volume | 104 | en_US |
dc.identifier.wos | WOS:000415298800009 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 41 | |
dc.subject | Fractional Differential Equations | en_US |
dc.subject | Caputo-Type Derivative | en_US |
dc.subject | Laplace Transforms | en_US |
dc.subject | Basset Problem | en_US |
dc.subject | Uncertainty | en_US |
dc.title | A novel approach to approximate fractional derivative with uncertain conditions | tr_TR |
dc.title | A Novel Approach To Approximate Fractional Derivative With Uncertain Conditions | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 30 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |