Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Comparative Study of Multiple Regression and Machine Learning Techniques for Prediction of Nanofluid Heat Transfer

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Asme

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The aim of this article is to introduce and discuss prediction power of the multiple regression technique, artificial neural network (ANN), and adaptive neuro-fuzzy interface system (ANFIS) methods for predicting the forced convection heat transfer characteristics of a turbulent nanofluid flow in a pipe. Water and Al2O3 mixture is used as the nanofluid. Utilizing fluent software, numerical computations were performed with volume fraction ranging between 0.3% and 5%, particle diameter ranging between 20 and 140 nm, and Reynolds number ranging between 7000 and 21,000. Based on the computationally obtained results, a correlation is developed for the Nusselt number using the multiple regression method. Also, based on the computational fluid dynamics results, different ANN architectures with different number of neurons in the hidden layers and several training algorithms (Levenberg-Marquardt, Bayesian regularization, scaled conjugate gradient) are tested to find the best ANN architecture. In addition, ANFIS is also used to predict the Nusselt number. In the ANFIS, number of clusters, exponential factor, and membership function (MF) type are optimized. The results obtained from multiple regression correlation, ANN, and ANFIS were compared. According to the obtained results, ANFIS is a powerful tool with a R-2 of 0.9987 for predictions.

Description

Keywords

Nanofluid, Ann, Fcm, Anfis, Empirical Correlation, Al2O3, Forced Convection, Heat And Mass Transfer, Thermal Systems

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Koçak, Eyüp; Aylı, Ece; Türkoğlu, Haşmet (2022). "A Comparative Study of Multiple Regression and Machine Learning Techniques for Prediction of Nanofluid Heat Transfer", JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, Vol. 14, No. 6.

WoS Q

Q3

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
11

Source

Volume

14

Issue

6

Start Page

End Page

PlumX Metrics
Citations

Scopus : 16

Captures

Mendeley Readers : 8

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.20122986

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

15

LIFE ON LAND
LIFE ON LAND Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo