Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Comparative Study of Multiple Regression and Machine Learning Techniques for Prediction of Nanofluid Heat Transfer

dc.contributor.author Ayli, Ece
dc.contributor.author Turkoglu, Hasmet
dc.contributor.author Kocak, Eyup
dc.contributor.authorID 283455 tr_TR
dc.contributor.authorID 265836 tr_TR
dc.contributor.authorID 12941 tr_TR
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2023-11-24T11:44:00Z
dc.date.accessioned 2025-09-18T12:06:26Z
dc.date.available 2023-11-24T11:44:00Z
dc.date.available 2025-09-18T12:06:26Z
dc.date.issued 2022
dc.description.abstract The aim of this article is to introduce and discuss prediction power of the multiple regression technique, artificial neural network (ANN), and adaptive neuro-fuzzy interface system (ANFIS) methods for predicting the forced convection heat transfer characteristics of a turbulent nanofluid flow in a pipe. Water and Al2O3 mixture is used as the nanofluid. Utilizing fluent software, numerical computations were performed with volume fraction ranging between 0.3% and 5%, particle diameter ranging between 20 and 140 nm, and Reynolds number ranging between 7000 and 21,000. Based on the computationally obtained results, a correlation is developed for the Nusselt number using the multiple regression method. Also, based on the computational fluid dynamics results, different ANN architectures with different number of neurons in the hidden layers and several training algorithms (Levenberg-Marquardt, Bayesian regularization, scaled conjugate gradient) are tested to find the best ANN architecture. In addition, ANFIS is also used to predict the Nusselt number. In the ANFIS, number of clusters, exponential factor, and membership function (MF) type are optimized. The results obtained from multiple regression correlation, ANN, and ANFIS were compared. According to the obtained results, ANFIS is a powerful tool with a R-2 of 0.9987 for predictions. en_US
dc.identifier.citation Koçak, Eyüp; Aylı, Ece; Türkoğlu, Haşmet (2022). "A Comparative Study of Multiple Regression and Machine Learning Techniques for Prediction of Nanofluid Heat Transfer", JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, Vol. 14, No. 6. en_US
dc.identifier.doi 10.1115/1.4052344
dc.identifier.issn 1948-5085
dc.identifier.issn 1948-5093
dc.identifier.scopus 2-s2.0-85127440203
dc.identifier.uri https://doi.org/10.1115/1.4052344
dc.identifier.uri https://hdl.handle.net/123456789/10907
dc.language.iso en en_US
dc.publisher Asme en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Nanofluid en_US
dc.subject Ann en_US
dc.subject Fcm en_US
dc.subject Anfis en_US
dc.subject Empirical Correlation en_US
dc.subject Al2O3 en_US
dc.subject Forced Convection en_US
dc.subject Heat And Mass Transfer en_US
dc.subject Thermal Systems en_US
dc.title A Comparative Study of Multiple Regression and Machine Learning Techniques for Prediction of Nanofluid Heat Transfer en_US
dc.title A Comparative Study of Multiple Regression and Machine Learning Techniques for Prediction of Nanofluid Heat Transfer tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.institutional Türkoğlu, Haşmet
gdc.author.institutional Koçak, Eyup
gdc.author.scopusid 57193872973
gdc.author.scopusid 55371892800
gdc.author.scopusid 6701516974
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.author.wosid Turkoglu, Hasmet/Jjd-2788-2023
gdc.author.wosid Kocak, Eyup/Hik-2192-2022
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Kocak, Eyup; Ayli, Ece; Turkoglu, Hasmet] Cankaya Univ, Dept Mech Engn, TR-06810 Ankara, Turkey en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.volume 14 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W3215684479
gdc.identifier.wos WOS:000789950100006
gdc.openalex.fwci 1.20122986
gdc.openalex.normalizedpercentile 0.76
gdc.opencitations.count 11
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 16
gdc.scopus.citedcount 14
gdc.wos.citedcount 13
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication 05bb7e0d-de81-461a-81fe-d9edc5169945
relation.isAuthorOfPublication 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isAuthorOfPublication.latestForDiscovery cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files