Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Two Majority Voting Classifiers Applied to Heart Disease Prediction

dc.authorid Tokdemir, Gul/0000-0003-2441-3056
dc.authorscopusid 35299561100
dc.authorscopusid 56875440000
dc.authorscopusid 24333488200
dc.authorscopusid 8375807400
dc.authorwosid Ergezer, Halit/S-6502-2017
dc.contributor.author Karadeniz, Talha
dc.contributor.author Maraş, Hadi Hakan
dc.contributor.author Karadeniz, Talha
dc.contributor.author Maras, Hadi Hakan
dc.contributor.author Tokdemir, Gül
dc.contributor.author Tokdemir, Gul
dc.contributor.author Ergezer, Halit
dc.contributor.author Ergezer, Halit
dc.contributor.authorID 34410 tr_TR
dc.contributor.authorID 293396 tr_TR
dc.contributor.other Bilgisayar Mühendisliği
dc.contributor.other Mekatronik Mühendisliği
dc.contributor.other Yazılım Mühendisliği
dc.date.accessioned 2024-01-25T12:34:01Z
dc.date.available 2024-01-25T12:34:01Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Karadeniz, Talha] Koc Univ, Sch Med, KUTTAM, TR-34450 Istanbul, Turkiye; [Maras, Hadi Hakan] Cankaya Univ, Vocat Sch, Dept Comp Programming, TR-06790 Ankara, Turkiye; [Tokdemir, Gul] Cankaya Univ, Fac Engn, Dept Comp Engn, TR-06790 Ankara, Turkiye; [Ergezer, Halit] Cankaya Univ, Fac Engn, Dept Mechatron Engn, TR-06790 Ankara, Turkiye en_US
dc.description Tokdemir, Gul/0000-0003-2441-3056 en_US
dc.description.abstract Two novel methods for heart disease prediction, which use the kurtosis of the features and the Maxwell-Boltzmann distribution, are presented. A Majority Voting approach is applied, and two base classifiers are derived through statistical weight calculation. First, exploitation of attribute kurtosis and attribute Kolmogorov-Smirnov test (KS test) result is done by plugging the base categorizer into a Bagging Classifier. Second, fitting Maxwell random variables to the components and summating KS statistics are used for weight assignment. We have compared state-of-the-art methods to the proposed classifiers and reported the results. According to the findings, our Gaussian distribution and kurtosis-based Majority Voting Bagging Classifier (GKMVB) and Maxwell Distribution-based Majority Voting Bagging Classifier (MKMVB) outperform SVM, ANN, and Naive Bayes algorithms. In this context, which also indicates, especially when we consider that the KS test and kurtosis hack is intuitive, that the proposed routine is promising. Following the state-of-the-art, the experiments were conducted on two well-known datasets of Heart Disease Prediction, namely Statlog, and Spectf. A comparison of Optimized Precision is made to prove the effectiveness of the methods: the newly proposed methods attained 85.6 and 81.0 for Statlog and Spectf, respectively (while the state of the heart attained 83.5 and 71.6, respectively). We claim that the Majority Voting family of classifiers is still open to new developments through appropriate weight assignment. This claim is obvious, especially when its simple structure is fused with the Ensemble Methods' generalization ability and success. en_US
dc.description.publishedMonth 3
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Karadeniz, Talha;...et.al. (2023). "Two Majority Voting Classifiers Applied to Heart Disease Prediction", Applied Sciences, Vol.13, No.6. en_US
dc.identifier.doi 10.3390/app13063767
dc.identifier.issn 2076-3417
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85151521094
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.3390/app13063767
dc.identifier.volume 13 en_US
dc.identifier.wos WOS:000957375400001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 5
dc.subject Majority Voting Classifier en_US
dc.subject Kurtosis en_US
dc.subject Gaussian Distribution en_US
dc.subject Bagging Classifier en_US
dc.subject Ensemble Methods en_US
dc.subject Heart Disease Prediction en_US
dc.title Two Majority Voting Classifiers Applied to Heart Disease Prediction tr_TR
dc.title Two Majority Voting Classifiers Applied To Heart Disease Prediction en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication 7269fd52-d99c-41aa-863d-cb899d6b3ab7
relation.isAuthorOfPublication 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication a10f79e3-acee-4bb2-82f2-548c5fb0d165
relation.isAuthorOfPublication e7c25403-d5d5-4ca7-b1c0-8e155d9a2310
relation.isAuthorOfPublication.latestForDiscovery 7269fd52-d99c-41aa-863d-cb899d6b3ab7
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 5b0b2c59-0735-4593-b820-ff3847d58827
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
392.76 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: