Study on Krasnoselskii's Fixed Point Theorem for Caputo-Fabrizio Fractional Differential Equations
| dc.contributor.author | Shah, K. | |
| dc.contributor.author | Sarwar, M. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.author | Eiman | |
| dc.date.accessioned | 2021-01-28T12:20:32Z | |
| dc.date.accessioned | 2025-09-18T15:43:15Z | |
| dc.date.available | 2021-01-28T12:20:32Z | |
| dc.date.available | 2025-09-18T15:43:15Z | |
| dc.date.issued | 2020 | |
| dc.description | Shah, Kamal/0000-0002-8851-4844 | en_US |
| dc.description.abstract | This note is concerned with establishing existence theory of solutions to a class of implicit fractional differential equations (FODEs) involving nonsingular derivative. By using usual classical fixed point theorems of Banach and Krasnoselskii, we develop sufficient conditions for the existence of at least one solution and its uniqueness. Further, some results about Ulam-Hyers stability and its generalization are also discussed. Two suitable examples are given to demonstrate the results. | en_US |
| dc.description.sponsorship | Department of Mathematics, Cankaya University, Etimesgut/Ankara, Turkey | en_US |
| dc.description.sponsorship | This research work has been financially supported by Prof. Dumitru Baleanu of the Department of Mathematics, Cankaya University, Etimesgut/Ankara, Turkey. | en_US |
| dc.identifier.citation | Eiman...at all (2020). "Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations", Advances in Difference Equations, Vol. 2020, No. 1. | en_US |
| dc.identifier.doi | 10.1186/s13662-020-02624-x | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85083996102 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-020-02624-x | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13904 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Krasnoselskii'S Fixed Point Theorem | en_US |
| dc.subject | Caputo-Fabrizio Fractional Differential Equations | en_US |
| dc.subject | Hyers-Ulam Stability | en_US |
| dc.title | Study on Krasnoselskii's Fixed Point Theorem for Caputo-Fabrizio Fractional Differential Equations | en_US |
| dc.title | Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Shah, Kamal/0000-0002-8851-4844 | |
| gdc.author.scopusid | 57216589853 | |
| gdc.author.scopusid | 56708052700 | |
| gdc.author.scopusid | 37003064000 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Sarwar, Muhammad/S-8896-2016 | |
| gdc.author.wosid | Shah, Kamal/S-8662-2016 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Eiman; Shah, K.; Sarwar, M.] Univ Malakand, Dept Math, Khyber Pakhtunkhwa, Pakistan; [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Bucharest, Romania; [Baleanu, D.] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2020 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3029924645 | |
| gdc.identifier.wos | WOS:000530344900003 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 17.0 | |
| gdc.oaire.influence | 3.82223E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Artificial intelligence | |
| gdc.oaire.keywords | Class (philosophy) | |
| gdc.oaire.keywords | Fractional Differential Equations | |
| gdc.oaire.keywords | Generalization | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Invertible matrix | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Krasnoselskii’s fixed point theorem | |
| gdc.oaire.keywords | Fixed Point Theorems in Metric Spaces | |
| gdc.oaire.keywords | Differential equation | |
| gdc.oaire.keywords | Banach fixed-point theorem | |
| gdc.oaire.keywords | Machine learning | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Fixed-point theorem | |
| gdc.oaire.keywords | Stability (learning theory) | |
| gdc.oaire.keywords | Functional Differential Equations | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Hyers–Ulam stability | |
| gdc.oaire.keywords | Banach space | |
| gdc.oaire.keywords | Fixed Point Theorems | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Caputo–Fabrizio fractional differential equations | |
| gdc.oaire.keywords | Fixed point | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Picard–Lindelöf theorem | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Geometry and Topology | |
| gdc.oaire.keywords | Uniqueness | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Ordinary differential equation | |
| gdc.oaire.keywords | Fractional ordinary differential equations | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | Hyers-Ulam stability | |
| gdc.oaire.keywords | Applications of operator theory to differential and integral equations | |
| gdc.oaire.keywords | Caputo-Fabrizio fractional differential equations | |
| gdc.oaire.keywords | Krasnoselskii's fixed point theorem | |
| gdc.oaire.popularity | 1.4624499E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.67635494 | |
| gdc.openalex.normalizedpercentile | 0.76 | |
| gdc.opencitations.count | 21 | |
| gdc.plumx.crossrefcites | 5 | |
| gdc.plumx.mendeley | 7 | |
| gdc.plumx.scopuscites | 37 | |
| gdc.publishedmonth | 4 | |
| gdc.scopus.citedcount | 37 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 22 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
