Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Comparison of Single Channel Indices for U-Net Based Segmentation of Vegetation in Satellite Images

dc.contributor.author Ülkü, İrem
dc.contributor.author Barmpoutis, P.
dc.contributor.author Stathaki, T.
dc.contributor.author Akagündüz, Erdem
dc.date.accessioned 2020-05-18T12:54:30Z
dc.date.available 2020-05-18T12:54:30Z
dc.date.issued 2020
dc.description.abstract Hyper-spectral satellite imagery, consisting of multiple visible or infrared bands, is extremely dense and weighty for deep operations. Regarding problems related to vegetation as, more specifically, tree segmentation, it is difficult to train deep architectures due to lack of large-scale satellite imagery. In this paper, we compare the success of different single channel indices, which are constructed from multiple bands, for the purpose of tree segmentation in a deep convolutional neural network (CNN) architecture. The utilized indices are either hand-crafted such as excess green index (ExG) and normalized difference vegetation index (NDVI) or reconstructed from the visible bands using feature space transformation methods such as principle component analysis (PCA). For comparison, these features are fed to an identical CNN architecture, which is a standard U-Net-based symmetric encoder-decoder design with hierarchical skip connections and the segmentation success for each single index is recorded. Experimental results show that single bands, which are constructed from the vegetation indices and space transformations, can achieve similar segmentation performances as compared to that of the original multi-channel case en_US
dc.identifier.citation Ulku, I.; Barmpoutis, P.; Stathaki, T.; Akagunduz, E.,"Comparison of Single Channel Indices for U-Net Based Segmentation of Vegetation in Satellite Images",Proceedings of Spıe - the International Society for Optical Engineering, Vol. 11433, (2020). en_US
dc.identifier.doi 10.1117/12.2556374
dc.identifier.isbn 9781510636439
dc.identifier.issn 0277786X
dc.identifier.uri https://hdl.handle.net/20.500.12416/3904
dc.language.iso en en_US
dc.publisher SPIE en_US
dc.relation.ispartof Proceedings of Spıe - the International Society for Optical Engineering en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Convolutional Neural Networks en_US
dc.subject Hyper-Spectral Imagery en_US
dc.subject Vegetation Segmentation en_US
dc.title Comparison of Single Channel Indices for U-Net Based Segmentation of Vegetation in Satellite Images tr_TR
dc.title Comparison of Single Channel Indices for U-Net Based Segmentation of Vegetation in Satellite Images en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.yokid 233834
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Çankaya Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü en_US
gdc.description.scopusquality Q4
gdc.description.startpage 8
gdc.description.volume 11433 en_US
gdc.identifier.openalex W3003839924
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 3.0968605E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 6.730583E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.72989191
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 5
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 7
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: