New Estimates of q1q2 -Ostrowski-Type Inequalities within a Class of n -Polynomial Prevexity of Functions
| dc.contributor.author | Kalsoom, Humaira | |
| dc.contributor.author | Idrees, Muhammad | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Chu, Yu-Ming | |
| dc.date.accessioned | 2024-04-25T07:39:52Z | |
| dc.date.available | 2024-04-25T07:39:52Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | In this article, we develop a novel framework to study for a new class of preinvex functions depending on arbitrary nonnegative function, which is called n-polynomial preinvex functions. We use the n-polynomial preinvex functions to develop q1q2-analogues of the Ostrowski-type integral inequalities on coordinates. Different features and properties of excitement for quantum calculus have been examined through a systematic way. We are discussing about the suggestions and different results of the quantum inequalities of the Ostrowski-type by inferring a new identity for q1q2-differentiable function. However, the problem has been proven to utilize the obtained identity, we give q1q2-analogues of the Ostrowski-type integrals inequalities which are connected with the n-polynomial preinvex functions on coordinates. Our results are the generalizations of the results in earlier papers. | en_US |
| dc.identifier.citation | Kalsoom, Humaira;...et.al. (2020). "New Estimates of q1q2 -Ostrowski-Type Inequalities within a Class of n -Polynomial Prevexity of Functions", Journal of Function Spaces, Vol.2020. | en_US |
| dc.identifier.doi | 10.1155/2020/3720798 | |
| dc.identifier.issn | 23148896 | |
| dc.identifier.issn | 2314-8896 | |
| dc.identifier.issn | 2314-8888 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/7980 | |
| dc.language.iso | en | en_US |
| dc.relation.ispartof | Journal of Function Spaces | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.title | New Estimates of q1q2 -Ostrowski-Type Inequalities within a Class of n -Polynomial Prevexity of Functions | tr_TR |
| dc.title | New Estimates of Q1q2 -Ostrowski Inequalities Within a Class of N -Polynomial Prevexity of Functions | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü | en_US |
| gdc.description.endpage | 13 | |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1 | |
| gdc.description.volume | 2020 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3045056026 | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 11.0 | |
| gdc.oaire.influence | 3.373746E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | partial \(q_1q_2\)-derivative | |
| gdc.oaire.keywords | \(n\)-polynomial preinvex function | |
| gdc.oaire.keywords | Artificial intelligence | |
| gdc.oaire.keywords | Ostrowski-type inequalities | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Matrix Inequalities | |
| gdc.oaire.keywords | Inequalities involving derivatives and differential and integral operators | |
| gdc.oaire.keywords | quantum integral identity | |
| gdc.oaire.keywords | Stability of Functional Equations in Mathematical Analysis | |
| gdc.oaire.keywords | Matrix Inequalities and Geometric Means | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Orthogonal Polynomials | |
| gdc.oaire.keywords | Algorithm | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Inequalities for sums, series and integrals | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.popularity | 1.0087549E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 6.07336069 | |
| gdc.openalex.normalizedpercentile | 0.98 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 12 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 39 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
