Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Detection of Hip Osteoarthritis by Using Plain Pelvic Radiographs With Deep Learning Methods

dc.contributor.author Ureten, Kemal
dc.contributor.author Arslan, Tayfun
dc.contributor.author Gultekin, Korcan Emre
dc.contributor.author Demir, Ayse Nur Demirgoz
dc.contributor.author Ozer, Hafsa Feyza
dc.contributor.author Bilgili, Yasemin
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-03-05T12:59:46Z
dc.date.accessioned 2025-09-18T12:05:05Z
dc.date.available 2024-03-05T12:59:46Z
dc.date.available 2025-09-18T12:05:05Z
dc.date.issued 2020
dc.description.abstract Objective The incidence of osteoarthritis is gradually increasing in public due to aging and increase in obesity. Various imaging methods are used in the diagnosis of hip osteoarthritis, and plain pelvic radiography is the first preferred imaging method in the diagnosis of hip osteoarthritis. In this study, we aimed to develop a computer-aided diagnosis method that will help physicians for the diagnosis of hip osteoarthritis by interpreting plain pelvic radiographs. Materials and methods In this retrospective study, convolutional neural networks were used and transfer learning was applied with the pre-trained VGG-16 network. Our dataset consisted of 221 normal hip radiographs and 213 hip radiographs with osteoarthritis. In this study, the training of the network was performed using a total of 426 hip osteoarthritis images and a total of 442 normal pelvic images obtained by flipping the raw data set. Results Training results were evaluated with performance metrics such as accuracy, sensitivity, specificity, and precision calculated by using the confusion matrix. We achieved accuracy, sensitivity, specificity and precision results at 90.2%, 97.6%, 83.0%, and 84.7% respectively. Conclusion We achieved promising results with this computer-aided diagnosis method that we tried to develop using convolutional neural networks based on transfer learning. This method can help clinicians for the diagnosis of hip osteoarthritis while interpreting plain pelvic radiographs, also provides assistance for a second objective interpretation. It may also reduce the need for advanced imaging methods in the diagnosis of hip osteoarthritis. en_US
dc.description.publishedMonth 9
dc.identifier.citation Üreten, Kemal;...et.al. (2020). "Detection of hip osteoarthritis by using plain pelvic radiographs with deep learning methods", Skeletal Radiology, Vol.49, No.9, pp.1369-1374. en_US
dc.identifier.doi 10.1007/s00256-020-03433-9
dc.identifier.issn 0364-2348
dc.identifier.issn 1432-2161
dc.identifier.scopus 2-s2.0-85084652939
dc.identifier.uri https://doi.org/10.1007/s00256-020-03433-9
dc.identifier.uri https://hdl.handle.net/123456789/10514
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hip Osteoarthritis en_US
dc.subject Deep Learning en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Vgg-16 Network en_US
dc.subject Transfer Learning en_US
dc.title Detection of Hip Osteoarthritis by Using Plain Pelvic Radiographs With Deep Learning Methods en_US
dc.title Detection of hip osteoarthritis by using plain pelvic radiographs with deep learning methods tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 6507776586
gdc.author.scopusid 57216788522
gdc.author.scopusid 55930673600
gdc.author.scopusid 57216784467
gdc.author.scopusid 57216783937
gdc.author.scopusid 56183279400
gdc.author.wosid Bilgili, Mirace/Abb-3286-2021
gdc.author.wosid Demir, Nilsun/H-7762-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ureten, Kemal] Kirikkale Univ, Fac Med, Dept Rheumatol, Kirikkale, Turkey; [Ureten, Kemal] Cankaya Univ, Comp Engn Dept, Ankara, Turkey; [Arslan, Tayfun; Gultekin, Korcan Emre] Kirikkale Univ, Fac Med, Dept Internal Med, Kirikkale, Turkey; [Demir, Ayse Nur Demirgoz] Afyonkarahisar City Hosp, Dept Phys Therapy & Rehabil, Afyon, Turkey; [Ozer, Hafsa Feyza] Bartin City Hosp, Dept Phys Therapy & Rehabil, Bartin, Turkey; [Bilgili, Yasemin] Kirikkale Univ, Fac Med, Dept Radiol, Kirikkale, Turkey en_US
gdc.description.endpage 1374 en_US
gdc.description.issue 9 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1369 en_US
gdc.description.volume 49 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W3014595077
gdc.identifier.pmid 32248444
gdc.identifier.wos WOS:000523403800001
gdc.openalex.fwci 6.71043839
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 220
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 60
gdc.plumx.pubmedcites 24
gdc.plumx.scopuscites 46
gdc.scopus.citedcount 45
gdc.wos.citedcount 42
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files